京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:丁点helper
来源:丁点帮你
今天我们开始一个新的主题——生存分析。什么叫生存分析?为什么要采用生存分析呢?
前面我们一起学习的多重线性回归和Logistic回归都主要是用来分析某个结果的影响因素,比如教育程度对收入的影响,或者,糖尿病发生与否的影响因素,这些方法主要是在静态地分析某一个特定的结果。
可是,倘若我们不仅仅关心结果的发生情况(发病VS未发病),同时我们也想看看发生该结果所经历的时间长短,此时,简单的线性或Logistic回归就难以满足这个需求,而生存分析可以来回答这类似的问题。
生存数据
多重线性回归,一般是指有多个自变量X,只有一个因变量Y。前面我们主要是以简单线性回归为例在介绍,两者的差距主要在于自变量X的数量,在只有一个X时,就称简单线性回归。
一般来讲,在医学科研中,生存分析较多应用在肿瘤病人的治疗方案评价方面。
这是因为对于癌症患者,我们往往更加关注的是”生存时间“,比如经常听到的:5年存活率、3年存活率... 而某种治疗方法的价值也主要表现在延长患者的存活时间。
比如在一项针对肺癌患者的研究中,研究者可能会关注下面三个问题:
1)肺癌患者接受治疗后的生存状况如何?
2)哪种疗法的效果最好?
3)这些患者在接受治疗后的生存状况与哪些因素有关?
我们可以看到,这三个问题的答案不可能简单地通过最终的治疗结果来衡量:治愈VS未治愈。
原因很简单也很残酷,癌症不像感冒那样,不是看治好还是没治好,让患者存活更多时间、存活地更体面成为人们追求的目标。
好了,回到我们的主题,如何掌握生存分析,并且灵活地运用呢?
第一步是对下面几个基本的概念有一个清晰的认识。
生存数据:前面我们说到了,在某些研究中,除了要关注某结局事件的发生与否,还会考虑发生该结局所经历的时间长短,这种兼有时间和结局两种属性的数据,就被称作生存数据。
这种将事件结局的出现与否和达到终点所经历的时间结合起来的统计方法就被称作生存分析。
由此,在进行生存分析时对”起点”、”终点“、以及”所经历的时间“(生存时间)都有十分明确的定义。专业术语一般称为:
观察起点(或称起点事件)、观察终点(终点事件)和时间间隔。
生存时间的确定
多重线性回归,一般是指有多个自变量X,只有一个因变量Y。前面我们主要是以简单线性回归为例在介绍,两者的差距主要在于自变量X的数量,在只有一个X时,就称简单线性回归。
案例:某研究搜集了2013年1月1日至2015年12月31日间肺癌患者的资料,以了解患者接受治疗后的生存情况及其可能的影响因素。
前面谈到生存分析很关键的一点是确定生存时间,而确定生存时间最重要的是确定好观察起点和终点。
在本案例中,2013年1月1日是观察起点;2015年12月31日是观察终点,问题是并非所有人都是在起点进入观察,也并非在终点就正好发生结局(即死亡)。因此,我们需要做好相应的记录。
对于起点,观察对象可以在起点同时进入观察,也可以在不同时间点进入观察,如下A、B两种形式:
A:所有观察对象在同一时间点接受观察;
B:观察对象在不同时间点接受观察。
上图中,带点的空心圆圈表示出现终点事件,带加号的圆圈表示尚未出现终点事件。
对于终点的判断,要稍微复杂一下。
本案例的具体数据如下:
我们先不细看上面的数据,想这样一个问题:从开始观察(2013/1/1)到观察终止(2015/12/31),所有的观察对象会有哪些情况发生呢?
1)观察期内,能够正常的随访,但在观察终点前因肺癌死亡;
2)观察期内,正常随访一段时间就断了联系,后面的情况一概不清楚;
3)观察期内,能够正常随访,但在终点前因其他原因死亡的;
4)从开始观察到终止观察,一直存活的对象。
大家想想,是不是所有的观察对象都是这四种情况?是的
符合上面第一种情况的数据,我们一般称作完全数据(complete data),如上表中编号为1和3的患者,生存时间分别为23个月和13个月。
完全数据提供的是准确的生存时间。除了”完全数据“,其他的所有情况(即上面的2-4情况)所获得的数据均称作”删失数据“(censored data),有时也被称作”截尾数据“。
上表中的2号患者,属于”失访“导致的”删失“,患者可能变更联系方式、未继续就诊或拒绝访问等原因,无法继续随访,未能观察到终点事件。
另外两种”删失“情况对应上面第3)和第4)种情况:
比如表格中的编号4的患者,虽然死亡,但是死于车祸,这种”删失“称作”退出“;
5号患者在观察终点时仍然存活,这种情况称作”终止“。
一般来讲,我们会在删失数据的”生存时间“数据右上角标记”+“,表示真实的生存时间可能长于观察到的时间,但是未知。
对于生存时间单位的选择并没有特别的限制,可以是年、月、日,或小时等,一般呈现非正态分布,所以在进行生存分析时需进行特定的调整,对此,我们后续再谈。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27