作者:丁点helper
来源:丁点帮你
今天我们开始一个新的主题——生存分析。什么叫生存分析?为什么要采用生存分析呢?
前面我们一起学习的多重线性回归和Logistic回归都主要是用来分析某个结果的影响因素,比如教育程度对收入的影响,或者,糖尿病发生与否的影响因素,这些方法主要是在静态地分析某一个特定的结果。
可是,倘若我们不仅仅关心结果的发生情况(发病VS未发病),同时我们也想看看发生该结果所经历的时间长短,此时,简单的线性或Logistic回归就难以满足这个需求,而生存分析可以来回答这类似的问题。
生存数据
多重线性回归,一般是指有多个自变量X,只有一个因变量Y。前面我们主要是以简单线性回归为例在介绍,两者的差距主要在于自变量X的数量,在只有一个X时,就称简单线性回归。
一般来讲,在医学科研中,生存分析较多应用在肿瘤病人的治疗方案评价方面。
这是因为对于癌症患者,我们往往更加关注的是”生存时间“,比如经常听到的:5年存活率、3年存活率... 而某种治疗方法的价值也主要表现在延长患者的存活时间。
比如在一项针对肺癌患者的研究中,研究者可能会关注下面三个问题:
1)肺癌患者接受治疗后的生存状况如何?
2)哪种疗法的效果最好?
3)这些患者在接受治疗后的生存状况与哪些因素有关?
我们可以看到,这三个问题的答案不可能简单地通过最终的治疗结果来衡量:治愈VS未治愈。
原因很简单也很残酷,癌症不像感冒那样,不是看治好还是没治好,让患者存活更多时间、存活地更体面成为人们追求的目标。
好了,回到我们的主题,如何掌握生存分析,并且灵活地运用呢?
第一步是对下面几个基本的概念有一个清晰的认识。
生存数据:前面我们说到了,在某些研究中,除了要关注某结局事件的发生与否,还会考虑发生该结局所经历的时间长短,这种兼有时间和结局两种属性的数据,就被称作生存数据。
这种将事件结局的出现与否和达到终点所经历的时间结合起来的统计方法就被称作生存分析。
由此,在进行生存分析时对”起点”、”终点“、以及”所经历的时间“(生存时间)都有十分明确的定义。专业术语一般称为:
观察起点(或称起点事件)、观察终点(终点事件)和时间间隔。
生存时间的确定
多重线性回归,一般是指有多个自变量X,只有一个因变量Y。前面我们主要是以简单线性回归为例在介绍,两者的差距主要在于自变量X的数量,在只有一个X时,就称简单线性回归。
案例:某研究搜集了2013年1月1日至2015年12月31日间肺癌患者的资料,以了解患者接受治疗后的生存情况及其可能的影响因素。
前面谈到生存分析很关键的一点是确定生存时间,而确定生存时间最重要的是确定好观察起点和终点。
在本案例中,2013年1月1日是观察起点;2015年12月31日是观察终点,问题是并非所有人都是在起点进入观察,也并非在终点就正好发生结局(即死亡)。因此,我们需要做好相应的记录。
对于起点,观察对象可以在起点同时进入观察,也可以在不同时间点进入观察,如下A、B两种形式:
A:所有观察对象在同一时间点接受观察;
B:观察对象在不同时间点接受观察。
上图中,带点的空心圆圈表示出现终点事件,带加号的圆圈表示尚未出现终点事件。
对于终点的判断,要稍微复杂一下。
本案例的具体数据如下:
我们先不细看上面的数据,想这样一个问题:从开始观察(2013/1/1)到观察终止(2015/12/31),所有的观察对象会有哪些情况发生呢?
1)观察期内,能够正常的随访,但在观察终点前因肺癌死亡;
2)观察期内,正常随访一段时间就断了联系,后面的情况一概不清楚;
3)观察期内,能够正常随访,但在终点前因其他原因死亡的;
4)从开始观察到终止观察,一直存活的对象。
大家想想,是不是所有的观察对象都是这四种情况?是的
符合上面第一种情况的数据,我们一般称作完全数据(complete data),如上表中编号为1和3的患者,生存时间分别为23个月和13个月。
完全数据提供的是准确的生存时间。除了”完全数据“,其他的所有情况(即上面的2-4情况)所获得的数据均称作”删失数据“(censored data),有时也被称作”截尾数据“。
上表中的2号患者,属于”失访“导致的”删失“,患者可能变更联系方式、未继续就诊或拒绝访问等原因,无法继续随访,未能观察到终点事件。
另外两种”删失“情况对应上面第3)和第4)种情况:
比如表格中的编号4的患者,虽然死亡,但是死于车祸,这种”删失“称作”退出“;
5号患者在观察终点时仍然存活,这种情况称作”终止“。
一般来讲,我们会在删失数据的”生存时间“数据右上角标记”+“,表示真实的生存时间可能长于观察到的时间,但是未知。
对于生存时间单位的选择并没有特别的限制,可以是年、月、日,或小时等,一般呈现非正态分布,所以在进行生存分析时需进行特定的调整,对此,我们后续再谈。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27