
作者:伍正祥
来源:AI入门学习
今天教大家画一个图,桑基图,一个大大提高你的江湖地位的图。桑基图是一种流图,其实在前期文章中提到过,但是并没有讲细节的画法,现在教大家两种画法,一个是R语言(案例1、2、3),一个是直接在线画(案例4)。
案例1:你的工资是怎么霍霍的?
假如你月薪20000,你能拿到多少?最后花完还剩多少?可能比你想象的要少。一部分被国家拿走,当然国家并不是要你的钱,只是帮你存起来,等你长大了,不对,是老了会还给你的(此处我想起了压岁钱的故事),当然税收部分,那国家说了,强制征收,打死都不会给你的。国家的拿完了,然后扣除柴米油盐酱醋茶等一些列开支,你会发现,又回到了穷人的队伍。
以杭州为例,根据工资计算器,五险一金+所得税大约扣6000多,你能拿到13000多,为什么扣这么多,因为杭州公积金12%,所以欢迎大家来杭州发展。除掉五险一金,就是各项生活开支了,最后剩下不足4000了。说了这么多,数据怎么表达更直观,大部分网站都用二维饼图,在分类很多的情况下,饼图比较乱,其实桑基图会有更好的表现力,看具体的绘图步骤。
step1:数据准备,理清各类数据金额或者比例
step2:数据格式转换,宽格式的转换成3列,注意会汇总多一行或者多行
step3:可以把数字标签加到文本描述里面,准备好后,套用文末代码即可
工资是怎么样离你而去的
案例2:比赛数据样本量统计
比赛分为初赛和复赛,初赛复赛分别有训练集和测试集,在训练集中,有5个分类,存在各种交叉,用桑基图如下。
比赛数据样本量统计
案例3:手机各个渠道销售量统计
手机品牌商会在不同的渠道进行销售,不同渠道又会在不同的省份进行销售,用其他类型的图表表达都显得拥挤,但是桑基图恰到好处的表现出来了,可以在标签上加上各个渠道的占比。
某品牌手机各个渠道销售量统计
案例4:在线用Echart绘制桑基图
绘图思路及数据准备和上面一样,只要手动更改标签及数据,运行即可得到想要的图形,下面是原始的demo截图,非常简单。
案例5:其他作品欣赏(需要一些开发资源)
开头图代码:
URL <-'https://raw.githubusercontent.com/christophergandrud/d3Network/sankey/JSONdata/energy.json'
Energy <- jsonlite::fromJSON(URL)
sankeyNetwork(Links = Energy$links, Nodes = Energy$nodes, Source = "source", Target = "target", Value = "value",NodeID = "name",fontSize = 12, nodeWidth = 30)
案例123代码,只需要更换文件即可
library(networkD3)#安装并包加载,如果没有请安装
library(dplyr)
setwd("C:/Users/wuzhengxiang/Desktop/R语言可视化/Sankey")#文件的存储空间
sankey = read.csv("手机销售渠道统计.csv",header=T,stringsAsFactors = FALSE)#读取数据
Sankeynodes = data.frame(name = unique(c(sankey$Source,sankey$Target)))
Sankeynodes$index = 0:(nrow(Sankeynodes)-1)
Sankeylinks = sankey
Sankeylinks = left_join(Sankeylinks,Sankeynodes,by=c('Source'='name'))
Sankeylinks = left_join(Sankeylinks,Sankeynodes,by=c('Target'='name'))
Sankeydata = Sankeylinks[,c(4,5,3)]
names(Sankeydata) = c("Source","Target","Value")
Sankeyname = select(Sankeynodes,name)
sankeyNetwork(Links = Sankeydata,Nodes = Sankeyname, Source = "Source",Target = "Target", Value = "Value", NodeID = "name", units = "元", #根据具体单位填写, fontSize = 12, nodeWidth = 24,sinksRight = FALSE, colourScale = JS("d3.scaleOrdinal(d3.schemeCategory20);"))
图片中使用了大量的动图,有专门的小软件可以制作。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28