京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在机器学习的过程中,我们需要对机器学习有个深入的了解,才能够更有把握地驾驭机器学习,但是有很多朋友由于不会选择算法或者不懂得其中的知识从而跳进陷阱,白白浪费了时间和精力而无果。在这篇文章中我们就重点给大家介绍一下关于机器学习中需要我们知道的必备知识。
我们在进行机器学习的过程中需要了解偏差和方差,在统计学中,一个模型好坏,是根据偏差和方差来衡量的,所以我们有必要了解偏差和方差的知识,首先偏差描述的是预测值(估计值)的期望E与真实值Y之间的差距。偏差越大,越偏离真实数据。而方差描述的是预测值P的变化范围,离散程度,是预测值的方差,也就是离其期望值E的距离。方差越大,数据的分布越分散。
一般情况下,如果是小训练集,高偏差/低方差的分类器要比低偏差/高方差大分类的优势大,因为后者会发生过拟合。然而,随着你训练集的增长,模型对于原数据的预测能力就越好,偏差就会降低,此时低偏差/高方差的分类器就会渐渐的表现其优势,而高偏差分类器这时已经不足以提供准确的模型了。
机器学习中你需要知道的事——算法怎么选
那么我们如何选择出一个合适的算法呢?其实算法我们首先应该选择的就是逻辑回归,倘若它的效果不显著,那么可以将它的结果作为基准来参考,在基础上与其他算法进行比较。然后我们试试决策树或者随机森林的知识看看是否可以大幅度提升你的模型性能。即便最后我们并没有把它当做为最终模型,我们也可以使用随机森林来移除噪声变量,做特征选择。当然如果特征的数量和观测样本特别多,那么当资源和时间充足时,使用SVM不失为一种选择。而现在深度学习很热门,很多领域都用到,它是以神经网络为基础的。而算法固然重要,但好的数据却要优于好的算法,设计优良特征是大有好处的。假如我们有一个超大数据集,那么无论我们使用哪种算法可能对分类性能都没太大影响。
在这篇文章中我们给大家介绍了机器学习涉及的偏差和方差的相关内容,同时也给大家介绍了如何选择出一个合适的算法。这些知识都是能够帮助大家更好地理解机器学习和掌握机器学习的,所以说我们在学习机器学习或进行机器学习领域工作时一定要注意算法的选择。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12