京公网安备 11010802034615号
经营许可证编号:京B2-20210330
北京CDA数据分析就业班50期学员
姓名kmell:庞同学
毕业院校:北京工业大学
专业:信息管理与信息系统
入职信息:玖富集团,数据分析师,北京
就业感言:
一、学习阶段:(远程版)
由于一些个人原因选择了远程学习的方式,较现场学习而言,从学习的态度和方法上都有很多不同之处。
首先,远程学习需要较强的自控力和持之以恒的耐心,并不会有人严格监督你的打卡和听课质量,所以在了解自身情况的基础上去选择适合自己的方式才是一个好的开端(自控力不足的小伙伴建议果断现场学习,理想很丰满现实很骨感)。持之以恒的耐心在于三个月的学习对我们来说并不是一个很短的周期,在整个学习的过程中,各模块知识点对你来说可能有难有易,有感兴趣的也有不太关注的,那么就需要去平衡他们,找到良性循环的方式:最基本的要保证听课的完整,因为无论哪部分内容总有你不太了解的知识点,先保证漏斗的开口足够大,才能为最终吸收的知识奠定基础;接下来要明确哪些内容是你的核心需求,因为人的精力都是有限的,不可能一上来就把方方面面学到极致,在学习前我们都应该明确自己的目的和目标,课程内容的设置也都能提前了解到,对于你的目标工作岗位的核心技术要求就是需要你重点关注的,那么无论难易都要花更多的时间精力去学习和练习,这些内容具体的排期你也要了解以便提前准备不受其他各种因素影响,比如SQL,统计知识等(像python和机器学习就要看每个人具体的目标岗位的设定了);三个月下来,我们并不需要保持每天时刻的高率学习(当然我们也做不到),而是应该有的放矢,劳逸结合,达到事半功倍的学习效果,这样也有助于我们保有持之以恒的耐心。
其次,学习方法上我使用三种模式(但对于远程小伙伴而已,保证这些模式效率的前提是你手边最好准备两台电脑,一台直播课程,一台跟着操作以及记录):
1. 对于熟悉或容易的知识点,上课用xmind做笔记,建立知识框架,紧跟课程节奏,熟悉的知识点简要记录,重要以及易忘的可以突出标记,课后根据框架梳理一遍并补全课上没记全的内容,例题和作业自己都再单独完成一遍,确保思虑清晰完整。
2. 对于不太熟悉且重点模块的知识,最好提前预习,不然上课就是完全懵(至少可以把涉及到的一些基本概念先理解一遍),上课遇到难点不理解的可以先记录之后找机会询问,尽量在当天多理解多记录多询问,还可以课间/晚自习讨论或上网搜一些资料答疑解惑,因为录播一般都是第二天课后才更新,当天课程如果落下太多可能会影响第二天的听课效果。但看录播复习也是重要一环,在整个课程的学习中,我对于不熟悉的知识点通常都会在后期观看2-3遍录播视频,每多学习后面的一部分知识再回过来复习前面的内容都会有新的认知理解和收获,同时对于知识点之间的连接也非常有帮助。
3. 对于知识的运用是我们学习的最终目的,所有的理论知识也都是为了支持实践,第三个模式贯穿整个学习过程,就是建立一个练习文件夹,像SQL,Python可以搜罗一些练习题来熟悉命令操作等。其他模块可以利用网上的数据或自己工作上的数据甚至是老师提供的练习数据,去作为一个分析项目来完成,从数据提取,清洗整理,描述性统计甚至建模做一些挖掘工作,到最终的数据可视化及数据分析结论报告的产出。项目输出的完整性既有助于我们把各部分知识整合起来,还锻炼了分析问题的思路,从中我们还会遇到很多实际问题,去解决,去优化,切身感受数据分析工作中的点滴(课程后期的案例和你自己学习过程中完成的一个个小项目都可以作为将来面试中的项目经历)。
二、就业阶段:
对于找工作的过程,我总结了几个关键点:
1. 准备要充分:如果说前面的三个月的学习都是纸上谈兵,那么找工作就开始真枪实干了,请拿好枪再上战场,不然一次次的失败可能会让你失去勇气和信心。简历和面试技巧在面试前老师都会协助我们做准备,但面试终究是要自己单打独斗,所有写在简历上的内容以及从面试时说出来的话,都必须是我们提前准备好且对答如流的,不然干脆就不要提及(这是亲身踩过的坑,不要给自己挖坑)。
2. 面试节奏和优先级安排:建议趁刚学完对知识比较熟悉的时候保持每天2个的面试量,岗位或公司不太满意的也不要一味拒绝,可以排在理想公司面试的前面,作为一个锻炼自我的机会,完善面试经验,为后续更好的发挥做铺垫。
3. 保持良好心态:心态为什么重要?如果你的能力不行,那么心态再好也没法通过面试,但是如果因为前期的失利导致自己心态崩了,不自信,破罐破摔不好好去准备后面的面试,那么那些本可以抓住的机会可能也就此错过了,导致陷入恶性循环,所以正视每一次的面试结果,总结问题。
最后,希望小小分享可以给小伙伴们带来一些帮助,也祝愿大家都能通过学习丰富自己,最终get到自己理想的工作
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12