京公网安备 11010802034615号
经营许可证编号:京B2-20210330
CDA数据分析师 出品
作者:Amanda West
编译:Mika
【导读】
对于刚入行数据分析师来说,在工作中总会遇到各种问题。本文作者就分享了她的感受。
数据分析很酷,然而我不认为在2000年代或更早的时候,会有小孩梦想长大后成为一名数据科分析师。
对我来说,我在小时候有很多梦想,我首先想成为一名兽医,然后是公园管理员、训狗员、作家、最后是经济学家。就像当时许多小孩子想在长大后成为律师、医生或宇航员一样。
当然,目标会随着时间而改变,在今年5月份,我获得了弗吉尼亚大学的数据科学硕士学位。毕业几个月后,我找到了我的第一份工作,正式成为一名数据分析师。刚找到工作的我欣喜若狂,因为我可以把用上我所学的技能,并向我的新同行们证明自己。但现实很骨感,在我入职这半年来,我也常常感到不知所措。
下面我就跟大家分享一下,工作以来我在数据分析行业所学到的技术层面和非技术层面的教训。当然这只是我个人的经验体会,毕竟每个人的感受都会有些不同。
不到20%
我非常喜欢用R语言进行编程。当我有选择的时候,我在这份工作的编程面试中我都使用了R语言。
尽管如此,在我的日常工作中,有95%的时间我都使用了Python和终端(在VS Code中),5%的时间我会用会SQL,而R语言基本用不到了。可以说在读书期间,比起学的Python课程,我花了大半时间学习的R语言课程的实际作用要小得多。其中我学习的很多例如网络爬取、NLP、Apache Spark或Tableau等工具基本没派上用场。
这也是正常的,因为很难预料到你在实际工作中到底要做什么。
如果你是致力于用特定语言编程的人,我的建议是,尽早询问招聘人员,公司的团队主要使用什么语言。即使你 原则上可以用你选择的编程语言,如果团队使用其他语言,这将加大代码审查和整合的难度。对我来说,提升Python方面的技能让我很受用,但对于使用Scala等语言的人来说,可能就不是这种情况了。
在我刚开始使用AWS时,我还不太熟练,但如今我每天都要跟它打交道。但AWS也是出了名的产品繁多,让人很难知道针对特定的任务需要什么服务。更糟糕的是,当你搜索如何在AWS中做某事时,往往会得到好几种不同的答案。为了解决这个问题,我一直在不断学习AWS相关知识。
像谷歌云和Azure这样的服务也很受欢迎,但如果你不知道你可能会使用哪一个,说实话,我还是推荐AWS。根据数据显示,AWS在2020年新企业云应用中占76%。尽管如此,大多数公司都在一定程度上使用云服务,了解云服务的基本工作原理和基本情况是很不错的。
特别是在排除软件故障时
在学校里,我们经常会得到干净、清洗后的数据样本,以便深入研究某些具体的深层问题。但当你实际工作后,特别是公司的数据团队较小,那么你往往需要面对真实、混乱且无序的数据。
这是不妨了解一下计算机背后在做些什么,这会有很大的改观。在处理有问题的数据时,我会使用如下命令 watch -d -n 0.5 nvidia-smi 和 htop 用来追踪诸如GPU/CPU的使用和内存的使用情况。我还会用 df -h 来监控特定目录中的文件大小,以防空间超限。
我还使用tmux会话,以便同时打开多个终端窗口,并使我的工作在进入远程机器时不会断开。最后,当我找到有效的解决方案时,我仍然会在网上寻找更好的替代方案,在处理大数据集时,这可以节省几分钟到几天的处理时间。
这些只是我测试机器上限数据的几种方法,欢迎在留言区分享你的方法。
作为一个刚入行的数据科学新手,是需要持续进行学习的。你将被要求做的任务,在很多时候会会让你不知所云,这意味着你要争分夺秒地找出解决方案,解决你甚至不知道存在的错误。你需要不停的搜索,看看其他人是怎么解决的,不断学习提升自己,慢慢的你编程方面变得更好,代码库将开始在每次迭代中变得更加合理。
至少对我来说,我觉得我在第一份工作中所学到的东西和我在大学期间所学到的一样多,这出乎我的意料。
如果你所在的公司使用主流编程语言,这是有一定优势的,因为你可以多浏览下Stack Overflow等平台,这无数次帮了我的大忙。
这并不是针对数据分析方面。在我读书时,我给自己很大的压力,不像我的同龄人那样经常放松。期中考试前,我会高强度的学习整整一周,除了打印更多的练习题或补充咖啡外,我几乎不离开我的房间。在非期中考试的几周里,我会强迫自己学习到深夜,然后一大早强迫自己醒来匆匆赶去上课。
一直以来,我都认为一旦我拿到学位,我就会养成正常健康的作息。每天保证8小时的睡眠,并且阅读、锻炼、健康饮食。工作也不会觉得让人感到枯燥,因为我喜欢编程,因此我生活中的一切都会变得美好。
但是,这并没有发生。
虽然工作确实增加了我的一些生活习惯,但是如果你在大学里也会加班加点搞学习,那么在工作中你也可能是个工作狂。反过来如果你在读书时就有些懒散,那么工作后也可能会拖延。总之,要善待自己,精疲力竭是不好的,平衡是关键,这一点我还在学习中。
显然,我的一些观点有些片面。但我很高兴成为一名数据分析师,我仍然相信从更大的角度来看,我的不足和自我怀疑是值得的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20