
前几天,我们数据分析就业班新报名的一个学员跟我们聊起了她的报名原因:她在面试一家心仪行业头部大厂的市场总监岗位时,三面的业务笔试70%内容都需要用数据分析来解答。虽然市场工作经验、管理能力和资源都不错,但还是遗憾的折戟沉沙。
所以她痛定思痛找到CDA数据分析师,一定要快速又有保障的系统掌握数据分析的能力。
上面这个学员遇到的这个问题不是个例,而是现在职场高阶晋升的普遍需求。
CDA数据分析师小编想起了知乎上有一个很火的帖子:如何能够拿到年薪50万?这个帖子受到了很多人的关注。
我个人认为想要拿到年薪50万,首先你要能够为公司带来相应的价值。
我和很多互联网从业者都交流过,他们大部分人一致认为自己工资不高的原因是因为待在小公司,如果换在阿里、腾讯、华为等企业,就一定能够拿到高薪。
不可否认这是其中的一个因素,但是你有没有想过,你目前掌握的技能支持你拿到年薪50万吗?
有很多人说自己的专业水平在行业同等职位中已经属于上层水平,但我想说的是这还远远不够。你想要拿到高薪,就一定要拥有一项通用技能。
所谓通用技能,我认为要满足几个条件:
1.能够为自己的职业增添色彩,无论是换工作还是涨薪都能如鱼得水。
2.帮助公司解决实际的业务问题,推动业务数据增长。
3.发展前景好,薪资涨幅高。
这里我推荐的技能是:数据分析
有人曾经分析过1000份简历,70%以上的岗位都要求具备数据分析能力,特别是高阶岗位。
翻看某招聘网站产品总监、市场总监、运营总监等任职资格时,都要求具备分析能力。当然,这个层级的分析必定是基于数据,而不是凭经验拍脑袋。
如果你不懂数据想要在互联网行业发展起来是非常困难的。只能一直在基层岗位做执行工作,而且还要面临随时被淘汰的风险。
无论是产品、市场还是运营只有具备数据分析能力,才能让策略更科学且落地,对业务产生的价值才能够更高。
举个例子
初级运营:你可能每天都在看数据、并把他们筛选出来。但是你却发现不了业务问题,解决不了业务困境。
高级运营:你需要对业务指标负责,定期通过数据来发现业务问题。迅速做出动作,对业务结果负责。
初级产品经理:容易盲目的做出一堆功能,却不知道这些功能的效用,也不知如何做优先级排序。
高级产品经理:通过建立数据漏斗定义问题所在,且能找到可评估的数据指标来跟进上线功能的效果,用数据驱动产品业务增长。
通过以上介绍,你会发现岗位越高,需要的数据分析能力就要越强。因为只能通过数据分析才能解决实际的业务问题。对于企业来说,这才是高价值的体现。
互联网、金融、咨询、电信、零售、医疗、旅游……不管你身处什么行业,可以说数据分析能力都是你晋升路上的一大助力。
具备数据分析能力的你为什么会受到公司青睐?
发现问题
发现问题是数据分析的第一层目的,其目的在于通过一定的数据呈现形式,挖掘和发现运营各个环节与业务增长各个模块的问题,将问题进行分类和汇总,即明确当前运营状况问题所在。
分析问题
第二层目的是在发现问题后,需要梳理其出现当前结果的具体原因,且是以实际情况为依据的。发现的每一个问题,可能是业务层面的每个变动所致,也可能是产品层面的迭代所致,因此需要一一排查,得出一个实际有效的结论。
解决方案
当从发现问题,并找到了问题的具体原因后,数据分析第三个层面目的是提出解决问题的方案,解决问题是数据分析的最终目的。解决问题需要运用一定的数据分析工具及分析方法,并且有足够的数据源来支撑,将挖掘出来的问题,从业务、运营、产品等层面进行对接,找出最佳的解决方案。
很多不懂数据的职场人,常常会被别人的数据搞糊涂,工作中很多东西都无法判断。比如,前一段时间,媒体说腾讯平均月薪 7 万,这么写的人,如果不是为了博眼球,真的长脑子了?看了之后,如果你信的话,别人会怀疑你没长脑子。
类似的问题还有很多,可以这么说,具备数据分析能力能让自己更有价值。除此之外,也能帮助我们做好各种决策。
除了业务上的思维外,如果想要深度学习数据分析,则需要掌握一些工具的使用如:Excel、Python、R、SQL等等。如果想要进一步了解、学习,可以扫码领取数据分析技能礼包。
如我们上文所说,数据分析能力可以说是每个业务岗位必备的能力,这一点也成为了越来越多企业管理层的共识。
但掌握数据能力的急迫性还没有得到大家足够的重视!大家学习数据分析能力的动作还没有!
很多人可能会像我们前言中介绍的这位学员一样,只有撞了南墙,错失了好机会后,才会在悔恨之余开始积极学习。
同为市场人,小编之前也是这种心态,这与我们对本岗位的长远职业规划不清晰有一定关系。
今儿小编汇总了几个数据能力加持下的业务岗位成长路线图,希望帮你把前路看的更清楚。
不管是根据目前业务需求自学还是为以后职场发展系统学习,小编认为你都应该行动起来了。
那么,不妨今天先从进一步了解数据分析开始~
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14