京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:Evan
本文为「心中有数」CDA征文作品
大家好,我叫Evan,想和大家分享一下我转行到数据行业的过程。
这篇文章也可以看成是我的一个总结,我主要会从转行的背景,过程,以及上岸的心路做个交流。
我先从我的基本情况说起,方便大家根据自身情况做下对比,对自己转行有个更清晰的了解。
我90后,普通本科,专业经济学。毕业后折腾了一两年,然后在一家制造企业做了四年的数据相关的工作。
这里补充下,所在公司是一家制造企业,对数据需求量不是很大.环境相对闭塞。每天基本上是公司-班车-宿舍,做的工作主要EXCEL处理,另外还有大量的行政事项。
目前,我刚刚上岸,在一家化妆品公司从事数据相关的工作。
以上这是我基本的情况,接下来我会说下我是怎么转型的。
1. 离职的原因
我在上个公司工作了四年,离开时做了颇多的心理斗争。
仔细理理,离职的原因有三个:
2. 与数据结缘
在上个公司工作第三年的时候,我开始考虑转行。
在此期间,我从网络上开始了解到与数据分析的工作。随着了解的深入,考虑到工作中有数据的经历和数据行业的未来,我开始决定转行到数据分析的工作。
经过短暂的比较,我报了CDA数据分析的课程。选择的原因也比较简单: 成立时间长,口碑不错。我当初报的是远程班,课程是数据分析一级和二级的课程,学习的内容很多,EXCEL、POWER BI、SQL、统计学、SPSS和PYTHON... 周末上课,前后大概半年的时间。
3. 离职备战
在上完课半年后,我下定决心离职备战。
下班后,我的学习动力不是很强,总是按耐不住玩手机的欲望,大量的时间被消耗掉。反反复复过了几个月,我觉得还是得逼逼自己,就离职了。
4. 学习过程
从离职到上岸,我前后用了四个月的时间。我想从学习方向确定,情绪梳理和与数据相关的朋友沟通这三个方向来细说下。
首先是,从事数据分析需要掌握很多的技能和工具。常用的的工具有:excel、sql、power bi、python等。知识上需要懂相关行业背景和常用的数据分析方法等。掌握这些工具和技能从长远来看都是必须的。
从短期来说对于想要挑战又很大。掌握哪些工具以及掌握到什么程度,自己要提前做个规划。我当时备战的时候,觉得power bi很好,又认为统计学很重要,Python爬虫很有用,结果自己纠结来,纠结去,啥也没学,浪费了很多的时间。
在此期间我看了很多的招聘需求,发现很多要求是SQL和Python。到此为止,我在学习上有了基本方向,主攻SQL查询和PythonN数据处理。
学习技巧上网上很多,我觉得老师说的很对,就四个多:多看,多学,多敲,多问。
做到了这四个多,软件掌握程度必然会很高。除此之外,我认为再加一个多,多输。把自己练习过的案例或者学习过程分享到网上,一来方便自己回看,二来为将来求职提供支撑和帮助。
在备战的过程中,我觉得情绪的管理会很重要。
转行是一场未知的旅程,我们每天看到有限的弹药在消耗,又不知道什么时候会上岸,压力会超过很多预想。除了与人交流,自我对话也是很有的方法。自我对话会理清思绪,认识到自己的初心,强烈推荐试试。
学习的过程中难免遇到问题,除了自己网上查找资料,加入相关的社群求教也是很好的方法。在社群中多交流会学的很快,也能认识更多的同伴,了解更多数据相关的事情。基于此,我很推荐在群里交流和学习。
03、上岸
我是在家学习两个月后开始找的工作。
刚开始不是很顺利。后来自己做了些总结,主要三点:
以上就是我的分享,希望能对大家有所启发。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27