京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:Evan
本文为「心中有数」CDA征文作品
大家好,我叫Evan,想和大家分享一下我转行到数据行业的过程。
这篇文章也可以看成是我的一个总结,我主要会从转行的背景,过程,以及上岸的心路做个交流。
我先从我的基本情况说起,方便大家根据自身情况做下对比,对自己转行有个更清晰的了解。
我90后,普通本科,专业经济学。毕业后折腾了一两年,然后在一家制造企业做了四年的数据相关的工作。
这里补充下,所在公司是一家制造企业,对数据需求量不是很大.环境相对闭塞。每天基本上是公司-班车-宿舍,做的工作主要EXCEL处理,另外还有大量的行政事项。
目前,我刚刚上岸,在一家化妆品公司从事数据相关的工作。
以上这是我基本的情况,接下来我会说下我是怎么转型的。
1. 离职的原因
我在上个公司工作了四年,离开时做了颇多的心理斗争。
仔细理理,离职的原因有三个:
2. 与数据结缘
在上个公司工作第三年的时候,我开始考虑转行。
在此期间,我从网络上开始了解到与数据分析的工作。随着了解的深入,考虑到工作中有数据的经历和数据行业的未来,我开始决定转行到数据分析的工作。
经过短暂的比较,我报了CDA数据分析的课程。选择的原因也比较简单: 成立时间长,口碑不错。我当初报的是远程班,课程是数据分析一级和二级的课程,学习的内容很多,EXCEL、POWER BI、SQL、统计学、SPSS和PYTHON... 周末上课,前后大概半年的时间。
3. 离职备战
在上完课半年后,我下定决心离职备战。
下班后,我的学习动力不是很强,总是按耐不住玩手机的欲望,大量的时间被消耗掉。反反复复过了几个月,我觉得还是得逼逼自己,就离职了。
4. 学习过程
从离职到上岸,我前后用了四个月的时间。我想从学习方向确定,情绪梳理和与数据相关的朋友沟通这三个方向来细说下。
首先是,从事数据分析需要掌握很多的技能和工具。常用的的工具有:excel、sql、power bi、python等。知识上需要懂相关行业背景和常用的数据分析方法等。掌握这些工具和技能从长远来看都是必须的。
从短期来说对于想要挑战又很大。掌握哪些工具以及掌握到什么程度,自己要提前做个规划。我当时备战的时候,觉得power bi很好,又认为统计学很重要,Python爬虫很有用,结果自己纠结来,纠结去,啥也没学,浪费了很多的时间。
在此期间我看了很多的招聘需求,发现很多要求是SQL和Python。到此为止,我在学习上有了基本方向,主攻SQL查询和PythonN数据处理。
学习技巧上网上很多,我觉得老师说的很对,就四个多:多看,多学,多敲,多问。
做到了这四个多,软件掌握程度必然会很高。除此之外,我认为再加一个多,多输。把自己练习过的案例或者学习过程分享到网上,一来方便自己回看,二来为将来求职提供支撑和帮助。
在备战的过程中,我觉得情绪的管理会很重要。
转行是一场未知的旅程,我们每天看到有限的弹药在消耗,又不知道什么时候会上岸,压力会超过很多预想。除了与人交流,自我对话也是很有的方法。自我对话会理清思绪,认识到自己的初心,强烈推荐试试。
学习的过程中难免遇到问题,除了自己网上查找资料,加入相关的社群求教也是很好的方法。在社群中多交流会学的很快,也能认识更多的同伴,了解更多数据相关的事情。基于此,我很推荐在群里交流和学习。
03、上岸
我是在家学习两个月后开始找的工作。
刚开始不是很顺利。后来自己做了些总结,主要三点:
以上就是我的分享,希望能对大家有所启发。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12