京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据分析有助电信企业“有的放矢”_数据分析师考试
随着智能手机,平板电脑等便携终端的兴起,移动互联网的发展也随之进入了快车道。据赛迪调研数据显示,2012年中国已有超过4亿用户尝试用手机访问互联网,微信用户突破3 亿,用户通过便携终端上网的频率呈现高速增长。这种增长一方面带来了海量的数据,而另一方面也带来了商机。这种商机对于电信运营商来说尤为明显。 但也许是大数据狂潮来袭的太猛,当电信运营商开始迎接移动互联网商机的时候却发现,由于缺乏运营经验,以及对移动终端掌控力度不足,再加上落后的创新能力等多方面的原因的限制,业务转型压力异常巨大。
在这种情况下,环视国际市场,国外同行的一些经验或许值得我们借鉴。美国电信运营商Sprint公司曾公开表态“即使运营商沦落为‘哑管道’,我们依靠数据分析也能生存下去。” ,由此不难看出,国外电信运营商已经找到了依靠大数据解决方案进行业务转型的途径。 实际上,对运营商乃至整个电信业而言,依托大数据进行业务转型其独到的优势。首先是电信行业的大数据资源相对丰富,再加上其可以咱短期内形成强大的数据分析能力,这些都为其开展新业务尤其是BI(商业智能)提供了可能。在这里,我们需要清楚电信行业究竟为何需要大数据,大数据又是如何运用技术架构实现业务增值,从而实现电信业转型的梦想。
管道化促使电信运营商实现转型
如上所述,在大数据狂潮之下,电信行业首当其冲。也是传统意义上产生大数据的最经常遇到的场景。很多基于客户感知,网络优化,流失分析等都是电信领域常见的大数据应用。 英特尔数据中心软件部大数据产品高级顾问黎超先生表示,随着移动互联网的快速发展,传统的电信运营商以前更多是利用手中的数据资源,对于自己的业务流进行相应的分析,也就是日常理解的所谓“账单关注”,关心客户的通信行为分析,而不是基于内容进行分析。由此产生的问题是运营商业务逐渐被管道化,随着这种管道化形成,业务收入也逐渐下降,这就促使运营商不得不对自身业务进行转型。例如前段时间的微信事件,这些都是促使运营商转变思路进行相应数据利用和分析的因素。
有效的大数据分析有助企业“有的放矢”
通过大数据的分析,我们可以帮助运营商更精准的360度的客户画像,过去这种客户画像更多的是基于业务流来进行,但随着移动互联网,互联网乃至物联网等多数据源的介入。可以让运营商将注重传统的业务流分析与用户关注的内容相结合,从而进行更精准的用户画像。由此再实现相应的增值业务。
黎超先生表示,通过这种方式,可以利用用户的信用信息,结合用户的消费行为,360度的精确画像来进行用户轨迹的跟踪。比如根据用户的信令获得用户的具体位置,通过数据分析之后,把结果提供给相应的企业,帮助企业进行更精准的企业选址和企业广告的推送,从而实现有的放矢。
除了让企业营销有的放矢之外,有效的大数据分析也可能会在CEP事件里帮助运营商实现增值业务的发展。比如说当特定的用户到达特定的位置时,可以产生相应的地理位置信息。利用这种地理位置信息,可以把周边关联的商户信息及时的推送给我们的客户。再结合客户自身的消费行为,客户的兴趣点进行相应的筛选,帮助用户实现精准营销。针对这样的增值服务帮助运营商拓展自己的运营渠道,避免在将来业务发展过程中被彻底管道化或者我们说哑管道化带来的负面因素。
可反复利用是大数据特点所在 虽然通过大数据实现精准营销的结果令人期待,但在这个过程当中,对于数据建设,仍有诸多地方需要注意。
黎超先生表示,这首先是利用数据,我们希望大数据产生大的业务价值,也就是利用数据进行相应的业务创新,但是业务的创新本身就源自对数据的分裂和重组,通过不停的分裂和重组来换取不同的角度,利用不同数据角度重新对世界进行定义。 在这个过程中数据作为一种资源,它跟其他的资源是有区别的。通常很多人会把数据资源跟石油资源相比较,但实际上数据资源的不同之处在于其可以重复使用并获得不同价值。在这种情况下,如何长期的保存原始数据,而且尽量把这些数据进行集中存放,便于数据进行分裂和重组就成了我们需要注意的问题。 第二是分析的角度可能会发生变化。和传统的机构化数据分析方法不同,将来的分析如果更多的面向内容进行分析,我们就需要把分析的角度,从相关性分析和因果关系分析结合在一起,或者是并重的角度来进行数据的探察。 因果关系的分析更多的是总结过去,我们做这种相关分析其实就是利用数据去做预测,去做未来事务的探察。
此外,在分析的过程中,需要注意的一个地方,运营商应该注重培养数据科学家团队的建设。 第三个需要关注的问题是数据开放,因为只有通过数据分享,才有助于企业创造新的价值。这种数据分享既可以是企业内部部门和部门之间的,同样也可以是企业员工之间的分享。另外通过数据获得更多的数据,在不同的合作伙伴之间来进行数据分享,也可以帮助企业最终实现多赢或者双赢局面。 最后一点,大数据应该易于利用,易于理解。让用户最终能轻松感到数据带来的价值。首先是数据的存放,应该是易于提取和组织、访问的。这样的话,才有可能人人成为数据分析师,专业的数据团队才能更好的进行数据分类和存储。
除此以外,可视化也将更有利于让用户体验到大数据带来的价值。 软硬件结合才能实现更有效的大数据分析 在大数据背景下,数据平台的建设也至关重要。首先,大数据拥有的成本必须是可控的,既包括初期建设成本也包括后期维护成本,我们最初利用大数据希望它成为价值不是成为负担。所以在数据建设过程中,就必须通盘考虑软硬件的搭配问题。 黎超先生表示,在硬件的选择方面,可以考虑符合工业标准的硬件来构建平台,对企业来说意味着有更多的选择,更低的硬件成本。而在软件层面上,可以考虑把开源软件和商业化的技术相结合,既实现了灵活多变又保证了整个系统的稳定可靠,同时可以大幅降低大数据软件平台的建设成本。
第二点,和之前系统建设更加注重纵向扩展能力不同。在海量数据环境下,系统将会具有更强的弹性。这使得系统的纵向扩展能力和系统的横向扩展能力达到了一个同等重要的水平。在纵向扩展能力受限的情况下,只有通过两者的叠加效应,最终才能实现大数据平台无限的扩展能力。 第三点,在资源使用上可以根据我们的业务变化对资源的分配进行动态的调整。 第四点,系统的弹性体现在多态社会并存的角度下。大数据的建设不可能一蹴而就,它是一个周期的。这就有可能出现软硬件由于采购时段不同,而造成兼容性下降的问题。
第五点,在海量数据环境下,如何保证系统的可用性。在传统概念里,保证数据可用性的方法主要是通过备份、容灾、数据复制等手段。但这些手段在大数据环境下则并不适用。这就要求另辟蹊径,比如实现机器和机器之间的镜像关系。 数据重构必须以对系统影响最小化为前提在大数据时代,数据结构自身也面临着不断的重构过程。因为数据的分类和重组是做大数据分析最基础的工作。这些过程必须在线完成,且不能对在线业务产生过大的影响。不能出现做一次业务重组或者数据重组,整个系统就瘫痪一次。
除此之外,黎超先生还表示,系统间的协作和整合,对于大数据平台的形成也至关重要。因为现在的大数据平台,并非是从零开始,需要兼容很多旧有的系统和平台,没有任何的一种数据平台是万能的。比如说大家看到关系型数据库更适合于用来处理因果关系的分析,像Hadoop这样的平台更适合用来处理半结构化数据和非结构化数据做相关分析。
整个企业要想处理有效的大数据机制,必须对所有的平台进行有效整合,在整合过程中应该勇于尝试新的技术,由问题牵引技术,而不是技术去牵引相应的问题。简单来说,一切从问题出发。 最后一点在大数据建设过程中,我们要进行多角度的平衡。比如说我们在进行产品设备选型时,要考虑很多的因素。比如说成本因素,性能因素。而不是说过多的去突出某一项因素,比如说我们会看到性能好固然好,但是大家都知道在性能提升的过程中,同时可能带来的一个问题是成本的上升。
像刚才讲到的一切从问题出发,解决问题够用就好,所以做到各方面的平衡也是在大数据平台建设过程中我们可能要考虑的。 在整个大数据平台建设过程中,英特尔承担的角色希望为企业大数据提供端到端的支撑,比如在数据采集端提供相应的软硬件设施,在数据存储和处理后端英特尔也有相应的技术为企业提供相应的支撑。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06