京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据的误解和中国的科技发展之路_数据分析师考试
在“云计算”持续升温的时候,“大数据”又来了。与云计算不同的是,这次媒体“理解”了大数据这个名词,所以逢年过节或者重大活动的时候,大数据成了媒体喜欢用的热词。
一、大数据的误解
相对于云计算概念,大数据是一个单纯的技术概念,容易理解和定义。但是从目前网上收集的资料来看,人们对大数据的理解存在较大的偏差。产生这种现象的原因比较简单,即研究大数据的是计算机专家,并不是哲学家,他们采用数量的多少来直观地处理数据,而不会采用“量变会产生质变”的思想来处理数据。
1、“狼”真的来了
哈佛大学社会学教授加里·金说,“这是一场革命,庞大的数据资源使得各个领域开始了量化进程,无论学术界、商界还是政府,所有领域都将开始这种进程。”
2013年5月10日,阿里巴巴集团董事局主席马云在淘宝十周年晚会上,将卸任阿里集团CEO的职位,并在晚会上做卸任前的演讲,马云说,大家还没搞清PC时代的时候,移动互联网来了,还没搞清移动互联网的时候,大数据时代来了。
IBM的 大数据战略以其在2012年5月发布智慧分析洞察“3A5步”动态路线图作为基础。所谓“3A5步”,指的是在“掌握信息”(Align)的基础上“获取洞察”(Anticipate),进而采取行动(Act),优化决策策划能够救业务绩效。除此之外,还需要不断地“学习”(Learn)从每一次业务结果中获得反馈,改善基于信息的决策流程,从而实现“转型”(Transform)。
基于“3A5步”动态路线图,IBM提出了“大数据平台”架构。该平台的四大核心能力包括Hadoop系统、流计算(StreamComputing)、数据仓库(Data Warehouse)和信息整合与治理(Information Integration and Governance)。
2、大数据的误解在哪里
维基百科的定义是,大数据(Big data),或称巨量数据、海量数据、大资料,指的是所涉及的数据量规模巨大到无法通过人工,在合理时间内达到截取、管理、处理、并整理成为人类所能解读的信息。在总数据量相同的情况下,与个别分析独立的小型数据集(data set)相比,将各个小型数据集合并后进行分析可得出许多额外的信息和数据关系性,可用来察觉商业趋势、判定研究质量、避免疾病扩散、打击犯罪或测定实时交通路况等;这样的用途正是大型数据集盛行的原因。
这个定义符合当前计算机专家的软件建模思维,即去掉现实模型中的复杂细节,由设计人员依据自身所掌握的知识,按照主观意识抽象出一个用来代替现实复杂模型的简单模型。
然而不幸的是,这种思维用于处理真正的大数据模型时,大麻烦就会出现了。蝴蝶效应让大范围内的数据效果变得不可思议。
对于计算科学来说,所有的理论和方法,都是为了处理数据本身的复杂关系。这是唯一的目的。如果把物理世界的存在事物当成数据体,那么物理世界的所有理论和方法,其目的也只是解决数据的存在关系。
人们对大数据的误解主要体现在以下一些方面:
误解一,大数据是大量简单小数据集的集合。真实情况是,大数据是由不同层次的数据集构成的复杂数据集合。其哲学逻辑描述是,大数据作为一个存在的事实,由一系列的数据集构成,数据集作为存在的事实,由更小的数据集组成,不能再分解的数据集被称为对象,是大数据的最小构成单元。
误解二,大数据的效果来自对大量小型数据集的合并分析。真实的情况是,真正决定大数据效果的是数据的组织连接形式,即结构。结构传递了结点上数据的效果,按照混沌理论,一个很小的局部事件,通过不确定性的非线性路径的传递,将产生蝴蝶效应。或者一个很大的局部效果,通过传递过程的衰减,变成很小的整体影响。
3、大数据的关键技术在哪里
尽管中国的IT权威专家或者技术人员很少质疑来自西方的新概念,把它们当成“真理”而大加宣传,但是西方的权威专家却在不断修正这些概念,有时会全面否定之前的定义或者观点。
据网上资料显示,UML之父Ivar Jacobson来中国参加一次活动时说,“软件工程中有几百种方法,种类太多本身就是一个问题,这些方法缺乏一个共同的基础,比如很难将CMMI和Scrum统一到一起。现在要做的就是重建软件工程的基础”。又比如google指出了hadoop存在的问题,并且采用其它技术来替换。
在中华文化里,“人穷志短”、“拉大旗做虎皮”是中国人很重要的的处世方式,这种生存哲学阻碍了中国取得原创革命性科技成果的机会。比如中国的权威专家一方面高谈完全自主知识产权的重要性,并以此通过政府的力量控制更多的资源,另一方面又想办法和西方的权威机构合作,利用他们的先进技术来保证自己在国内的技术领先地位,甚至少数人幻想这种方式可以让他们超越给他们提供技术的西方合作机构。
大数据是一个西方专家目前并没有弄明白的东西。谷歌的工程师发现当大量的数据出现时,就可以获得一种规律性的结论。于是西方专家提出了大数据(Big data)概念,并快速成为科学家、企业家和政府关注的对象。
据网上资料说,谷歌流感趋势预测的文章发表4年以后,新的一期《自然杂志消息》报道了一则坏消息:在最近的一次流感爆发中谷歌流感趋势不起作用了。
建立大数据模型并不是一件容易的事情,受还原论思想的影响,西方的计算科学家采用线性思维来建立大数据模型,大数据只是大量小数据体的集合,并不考虑数据聚集在一起后产生的整体效应。这不是说西方科学家不了解整体效果,混沌理论,蝴蝶效应也是西方科学家提出的。
除了民族自卑感外(长期的民族屈辱使中国人失去了原始创造的自信),追求个人(或者小集团)名利的社会大环境使中国失去了原始创造力的生存土壤。
建立大数据模型需要把西方的还原论和东方的整体论思想结合起来,参照《逻辑哲学论》里的描述方式,大数据是由大量不能再分解的数据单元构成的,这些数据单元连接成小数据体,小数据体再连接成数据体,最终连接成一个大数据体。所以大数据是一个巨复杂的数据模型,但是这个巨复杂模型又是由简单模型组成的。可见大数据的关键技术在于数据体的组织连接形式,即结构。
由此可见,大数据技术包含两大部分,一是简单数据处理,属于传统技术,目前已经有很多有效的方法;另外一个是数据结构处理,这是一个全新的技术,也是云计算的典型特征,在这个技术领域,中国和美国等发达国家处在相同的起跑线上。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06