
做数据分析师能长久吗_数据分析师考试
假如你是一位出色的分析师,你会发现业务方对你的要求是最好能未卜先知,不仅提出问题,同时告诉他解决方案。可是能达到这种水平的分析师不就是三国时代的诸葛亮吗?但“诸葛亮”也有自己的痛苦,每个月月底当数据已经全部具备的时候,分析师往往还需要几天的时间才可以给出对业务的观点。一方面他们要确认这个数据的准确性,另一方面还需要具备严谨的逻辑和对商业的足够理解,这样才能在有限的时间里窥一斑而见全豹。
不过,今年一月份发生了一件奇妙事情,让人大开眼界:在Google公布了上一季度业绩之后的几分种时间内,一家公司叫AutoInsight的公司就发出了对这个业绩报告的观点以及对未来Google股价走势的评估。为什么这家公司能在这么短的时间内做出这么快的反馈呢?而且我们发现它已经在用类似的方法发表过约300篇没有作者的机器人文章。
我们知道,证券交易及对冲基金成功的关键在于及时判断,而通过大量信息的定量研究比别人哪怕早一分钟知道股票的走势都可以获得巨额利润。而这种预测也随着更多的社交信息如Facebook、Twitter、实时新闻以及交易数据的整合而变得越来越有看头。即时分析也正是运用了大数据的優势,在某一公司的业绩讯号出来时,迅速刷新信息、辨识市场预测与业绩报告的差距、跟踪即时的市场反应包括专家言论及交易情况,使其更有能力判断市场走向。在资本市场中,其实很多年前已经关注股民情绪对市场的影响,这也是大数据在资本市场中最早期的应用之一。这其中的关键是在于大量参差不齊的社交数据是否能帮助判断市场是否过度敏感?还是大家对市场太有信心?其实,单靠社交网站的数据是不足的,如果能结合交易和新闻等历史数据及实时数据进行去伪存真的分析,可以立马做出一份几乎可以跟一个资深分析师媲美的分析报告。
HedgeChatter就是这样的一家公司。他们每天实时扫描近百万条聊天信息、全世界内相关股票的交易纪录,以及更多股票评论员的专家分析来帮他们动态地估计股票的波动和变化趋势,并直接使用社交数据信号去分析7600支美国股票的实时交易,据说预测的准确率可以高达60%。
如果我们进一步深究这两个例子,我们会发现计算机、互联网、大数据和专家这四个角色在其中的作用。机器的强项不仅在于其对数据和信息的无限记忆能力和高速处理能力,而且不用休息;互联网的厉害之处在于创造了海量数据和信息,并可以在瞬间把它们关联起来;大数据的厉害之处在于能把所有的东西进行量化,方便人类识别盲点、重新认知事物,并对事物进行全景的理解和分析;更能从众多变量中快速找出核心变量或事情发生的规律;专家的强项之处在于能在信息不全的情况下利用自己的经验和理解做出正确的判断。在懂得这四者的优缺点的基础上做出大数据产品和方案才是一个容易成功的方案,反之则容易失败。
因此,在我看来,自动化分析报告只能吓倒一些初级的分析师,并不会对有经验的分析师产生影响。股票分析师们一点都不用担心机器会打击这个行业,反而可以好好利用机器的强项让我们更具威力。说到这里,我想起了一句话:大数据就是学会如何活用别人的数据冗余,站在金山上吃馒头还是吃魚翅就看你的本事了。自动化新闻和股票分析让我们产生了无限遐想。未来,小说、食谱甚至音乐未尝不可以利用大数据进行创作。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13