京公网安备 11010802034615号
经营许可证编号:京B2-20210330
供应链大数据:O2O体系的建立指南_数据分析师考试
O2O之火几乎点燃了各家企业寻求变革与跃进的热情。企业渴求O2O转型能带来蓬勃生机。然而O2O并不是简单的在网上开个商城,做个APP或者微信营销,那只是实体企业市场营销电子化, 并没有发挥线上线下O2O整合的力量。只有通过整合企业上下游供应链,科学的规划,大数据支持,结合产业特点,才能打造符合企业自身特点的O2O平台。
近期笔者有幸负责参与实施了国内一家著名轮胎企业的O2O战略,发现一些企业已经逐步意识到了这一点,更多的企业在审视自身的情况下结合产业优势,通过供应链大数据整合,成功的实现O2O模式和企业运营升级。
以轮胎行业为例,作为具有独立特点的汽车后市场领域产业,其客户包含了终端消费者,整车厂、物流园、各类维修机构、车队等。服务特点不仅要满足终端消费者的安装需求,还要满足整车厂的时效性、维修机构流动性等特点。这就要求企业在搭建O2O平台时要从需求拉动生产的角度,运用供应链大数据从客户购买需求、仓储、物流配送、采购、生产、售后等各方面实现真正的线上线下一体化整合,这其中的重点有以下几项:
1、第一步:实施O2O, 先整合渠道
O2O线上线下整合需要互联网渠道和实体门店渠道同时作为消费者接触面,将渠道信息进行实时、有效的整合并相互促进。而这两类渠道有着不同的渠道管理模式,其业务和管理方式存在着复杂性。除了利用现有大型电商平台建立接触面或自建电商平台外,实施O2O首先要考虑经销商和门店体系的整合,不通过信息化、数据化手段无法掌握门店终端的信息和数据,更无法将线上订单与门店交付结合,实现线上线下协同,也就失去了实施O2O的根本,仅仅是做了一些业务的电子商务化。
2、第二步:全触点数据采集,形成最完整的用户需求大数据全息图
针对不同用户群体应用特点,从便利性和可靠性角度,通过信息化手段,尽可能全面的覆盖用户需求数据。面向终端消费者的自营B2C、第三方电商平台,与主机的EDI数据对接,物流园、公交公司等其他企业的B2B电商门户。通过最合适的方式快速、准确的获取到客户需求。同时也要实时掌握各地库存信息,物流信息,以便了解供应链整体情况,为需求分析和预测提供准确的数据支撑。
3、第三步:建立基于供应链大数据的预测补货体系
对于需求的响应和相关预测体系是另外一个核心环节,这里要考虑到的是客户需求、各地库存数据、物流运输能力、生产排程乃采购环节。通过建立智能预测补货模型实现对用户需求的快速响应。一方面是将线上需求订单通过线下门店交付,另一方面可根据门店销售交付建立预测性补货,O2O平台建立的过程是实现线上线下一体化、整合化,通过供应链大数据的整合,实现线上线下数据联通、业务联通。而最终目的是使企业从更高层次的运用大数据作为企业战略分析决策支持,更好的分析用户喜好、企业各组织机构运营能力、未来市场走势,实现企业的持续健康成长。
O2O体系的建立是一个长期、系统的过程,而在这个过程中,供应链大数据是这项工作的指南针,供应链大数据所发挥的作用正在逐步影响更多的企业。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28