
当大数据碰撞征信会产生什么_数据分析师考试
作为当今企业信息化领域最热门的话题,大数据掀起了新一波IT投资和信息化建设的浪潮。无论是在大数据发源的互联网和电子商务领域,还是在金融、零售、制造、物流等线下业务领域,越来越多的中国企业开始思考、探索和尝试应用大数据的技术和手段,来提升营销、运营和生产的效率及效能。
个性化信息成大数据营销法宝
瞄准大数据时代带来的巨大市场机遇和广阔前景,百分点公司定位于第三方大数据技术和应用服务提供商。百分点创始人兼董事长苏萌告诉《经济参考报》记者,“数据在未来是商业里面最核心的价值,我们做的所有的事都是希望让数据能够变现”。
他介绍说,公司初创于2009年,一开始做个性化推荐引擎,为电商客户做商品个性化推荐。目前,百分点是国内第一家也是最大的推荐引擎技术服务公司。
“如果用户在浏览网站时,三次点击找不到感兴趣的内容,那么跳出率就会高达90%,因此,个性化推荐就显得尤为有价值。”苏萌说,所谓个性化信息流推送,通俗地说,就是通过用户在网站的点击实时预测用户当前的场景、偏好和需求,并将个性化的信息实时展现在用户面前,呈现出“千人千面”的不同展示。
举例来说,比如用户在PC端登陆某购物网站浏览某商品,随着用户的每一次点击,展现的内容就会不一样,网页上还会根据用户的兴趣偏好向这个用户推荐他可能喜欢的同类商品。如果用户并没有在PC端挑选好商品,当他在回家的地铁上用手机浏览该网站的手机端,随意输入搜索内容,此时PC端曾经浏览过的商品就会显示出来,用户就可以轻松地找到感兴趣的商品。通过跨屏、跨设备的打通,个性化推荐让用户轻松在PC端和移动端进行无缝浏览和购买商品。
“根据用户的行为轨迹实时预测该用户当前的场景、偏好和需求,并实时将个性化的关联信息展示到用户面前,已成为大数据营销制胜之关键技术手段。”他说。
大数据底层平台助力实体运营
而个性化推荐引擎的应用只是众多大数据应用中的一个例子。进入大数据时代,已经从信息技术走到了数据技术,如果说信息时代主要处理的是企业内部的小数据、结构化数据,那么数据技术时代,面临的则是海量的外部非结构化数据,包括用户评论数据、行为数据、社交网络数据等等。
苏萌说,就像几十年前,企业开始意识到品牌是资产但是不知道如何去评估,在大数据时代,越来越多的企业意识到数据资产的重要性。但是,怎么把这个资产调整好,把这个资产发挥出价值,怎么把这个资产沉淀到数据平台里面,以及和外部数据进行对接,这些都是要解决的问题。企业需要新的“容器”沉淀数据资产。从用户数据到企业内部数据到企业外部数据,都需要打通整合。
帮助传统企业搭建大数据底层技术平台,也是百分点目前重点发展的一条业务线。这相当于帮助每个企业建立了一个大数据管理系统。通过整合企业内部和外部的数据,对数据进行清洗、加工和建模,为线上零售、线下零售、金融证券、品牌家电制造和品牌汽车等企业的战略、运营、管理、市场、营销等不同部门提供各种数据产品和应用。
举个例子,企业客户服务中心的电话被用户接通之后,客户服务中心工作人员面前的电脑就会显示出打入电话用户的相关消费信息等。再比如,很多企业投放很多广告,但是都没有数据沉淀,这个容器就可以让数据存到数据资产中,可以知道哪儿来的流量转换率更高,从而使得广告投放更加精准。
一个形象的比喻就是,“不需要每个企业都自己去挖井才能喝水,我们挖了一个大井把水提供给大家。”
在数据资产的沉淀管理基础上,包括自动化触发营销等也都可以变为现实。比如说,一个用户在某网站看到一款笔记本电脑,过去的一周内连续三次去浏览,但都没有购买,那么系统就会预测出来这个用户有购买意愿,但是支付意愿可能低于这款笔记本电脑的价格,那么就会触发一个个性化优惠券,使这个用户达到购买价格。
应用市场将呈现三大趋势
纵观大数据市场,在苏萌看来,目前已经从基础设施投入转向了大数据的分析与应用,所有企业的数据与分析都正在转向云端。大数据应用市场将会呈现三个趋势。
第一大趋势是,大数据一定会沿着垂直领域进行深入。“我们不相信会有一种通用的大数据技术、大数据解决方案适应不同的行业。比如电商行业、线下零售行业、汽车行业、家电制造业,这些都是完全不一样的数据结构,企业需求的数据也不一样。”
第二大趋势是,大数据在企业级的软件市场将会有更多突破。目前涌现出很多优秀科技人才和创业者,包括云的智能处理,语音识别的这样一些企业。未来大数据行业也会有很多这样的企业。
第三大趋势是数据融通。大数据的出现,主要是由于出现了移动互联网以及数字化媒体,产生了大量行为的记录,对用户的了解也越来越深刻,这是大数据与以往不同的地方。如果数据不能够在企业之间流转,那么每个企业都将是一个数据孤岛。而大数据首先要解决的就是信息孤岛问题。数据是要流通的,是要交叉运用的。如果数据不能流通,那么真正意义上的大数据时代还没有到来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28