
论大数据时代审计数据分析的发展方向
一、审计数据分析目标的转变
随着现代审计理论的不断发展,审计数据分析的目标也在逐步发生变化。在计算机审计发展的初级阶段,审计数据分析是通过对数据的观察和分析发现疑点,寻求突破点,为业务审计提供线索;而随着审计目标的转变,目前审计数据分析也逐步转向发现线索、评估风险、关注效益,将揭示制度问题、评估控制风险与发现重大违法违规问题并重。下阶段,随着国家治理理论的发展,审计数据分析将在宏观决策支持、政策风险与实施效益评价方向上继续发展,通过对相关大数据的获取和分析,洞察行业整体走向和制度实施效果,认识演变规律,进而对国家、行业、部门的制度出台及发展策略做出前瞻性的思考和战略性的分析。
二、转变数据分析组织方式,宏观分析智囊团出现
目前,数据分析的实施大多基于培养的计算机骨干和业务骨干,在审计项目中加强二者的联合,共同完成数据分析工作。在此基础上,部分审计机关已经构建自己的数据分析团队,形成了制度、人员、管理相对固定的数据分析模式。随着数据分析理论、实践的不断探索和推进,数据分析团队解决了数据分析与业务分析的大部分问题。但在宏观分析、制度执行情况分析方面,数据分析团队受数据分析软硬件环境、人员知识结构等因素的影响,难以完成系统性、宏观性的分析工作。需要在原有组织架构基础上,搭建由宏观分析专家、行业审计专家、数据分析专家构成的宏观分析智囊团。宏观分析智囊团在获取到尽可能全面、详尽的数据基础上,运用审计数据分析的前沿理念和技术,构建数据模型,开展数据分析和数据挖掘,并根据具体的行业政策和实际情况,不断地对数据模型进行优化和修正,结合数据可视化等展示技术,达到宏观分析和制度执行效果探索等目的,对宏观经济、制度执行等内容提出有针对性的意见和建议。
三、审计数据分析方法和手段的发展
(一)挖掘型分析方法的发展
目前审计机关中应用较多的是查询型分析和验证型分析。在运用数据发现经济活动内在规律的时候,查询型分析和验证型分析往往力不从心,需要引入挖掘型分析。挖掘型分析是利用数据仓库和数据挖掘工具进行的审计分析,主要有分类、聚类、异常、演化等方法。审计利用聚类分析,将相似性高、离散度小的数据分组;利用异常分析,发现“噪声”数据,进行疑点分析;利用演化分析,基于数据的类似性和规律性,对数据记录随时间变化的发展趋势进行推断,分析制度执行情况。挖掘型分析能高效地聚合、检索、观察和分析海量数据,从中发掘隐藏的疑点和规律,其使用的多维概念和表现模式也更符合人的思维习惯。同时,结合图形化界面、可视化技术,使数据规律和数据的特征能更加直观地显现出来。审计将查询型分析、验证型分析和挖掘型分析有机结合,提高工作效率和效果。
(二)将统计学的思想和方法应用于审计数据分析。
统计学是一门实质性的社会科学,既研究社会生活的客观规律,也研究统计方法,是数据的科学,是收集数据、整理数据、分析数据以及由数据分析得出结论的方法。审计可以运用统计学的思想和方法,使用统计分析软件,解决审计数据分析问题。一是针对审计数据,运用回归分析等统计方法,分析数据关系,发现规律;二是运用关联分析,找出数据间的相互联系,分析关联规则,发现异常联系和异常数据,寻找审计疑点;三是分析数据中的离散点,发现偏差数据,作为审计重点进行分析。
(三)利用云计算和虚拟化技术,整合审计数据中心数据和计算能力。
审计数据中心和分中心正在如火如荼的建设中,在某些跨行业和跟踪审计项目中已经发挥了积极的作用。下阶段,为了充分利用数据和数据中心的计算能力,还需要利用新的计算机技术方法进行资源整合,如在审计数据分析中,采用云计算和虚拟化技术,将基础设施及软硬件集中起来,通过审计数据中心网络进行资源的整合,统一提供服务,包括数据的查询服务和计算服务,将会大大提高计算机系统的存储能力和计算能力,提升审计数据分析的效率。
(四)收集审计分析模型,构建分析模型知识库。
目前,审计人员开展计算机审计形成了不少具有借鉴意义的计算机审计方法。下阶段,随着审计数据分析方法的发展,越来越多的审计数据分析模型在审计工作中得到运用,这些模型利用数据挖掘和统计技术方法形成,具有直观、可视化、便于理解等特点。为了审计模型的不断优化和延续发展与借鉴,审计机关应致力于整理收集各领域审计分析模型,构建分析模型知识库,并在推广应用中不断优化、增加和更新,以促进审计数据分析方法的深入发展。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27