
大数据时代:要么去改变,要么被改变
2015浙商大会迎来了一位重量级嘉宾:国际大数据最顶尖的专家之一、在科技和互联网领域极有影响力的《数据新常态:如何赢得指数级增长的先机》一书作者克里斯托弗·苏达克(Christopher Surdak)来了。站在互联网+的风口,苏达克用大数据给浙商做了一次头脑风暴。
告诉消费者“我懂你”
但“太懂你”会引起不适
过去15年中,我们不停地问这些问题:客户是谁,他们需要什么产品,需要什么样的价格?但是现在事情相反了,我们不仅要知道是什么,更重要的是要知道为什么。我们要关心客户为什么买,为什么在那个时间买。我们对客户的了解越多,对客户的需求把握也会更加精准。
大数据分析最重要的一点就是,当我们有不同的原始数据的时候,首先要保持及时性;其次是预测,下一步怎么做,我们要做有预测性的分析。最后一点也很重要,当有分析结果出来的时候,企业要行动,这个行动要在第一时间内告诉消费者“我懂你”。
一个案例就是亚马逊[微博],他们会做一个预测性分析,把货物通过最短距离运送到客户家里。当你根本还没有做出采购选择时,他就预测到了你未来可能会做哪些采购。亚马逊对客户的掌握非常好,不仅能预测到你要购买这个东西,而且知道如果运输过去后,你一定会很开心。这个过程中,需要强大的数据支撑,用于了解客户心理、客户想法,当你把货运到他们家时,他会觉得你懂他。
亲密感虽然是客户所希望的,他们希望你能“懂我”,但如果他们觉得你过多地进入了自己的生活,“你太懂我了,我会有恐慌感。”这就是与“亲密感”所对应的“不舒适感”。
所以我们要做的事情是:我们懂消费者,但是不能让消费者感到害怕。一家聪明的公司,他们知道消费者知道什么,但是还是和他保持相对的距离,让他感觉亲密,不会让他感觉到不适。当你跨过了这条分界线,让他感觉不舒适,他会离开,觉得你不是一个很好的平台。
打通数据的桥梁
就能颠覆行业
现在所有人都在讨论一家叫Uber的公司。以前出租车公司想的是,能够把乘客送到想要去的目的地即可,但这么做还远远不够。消费者更关注是否能够最快速度地搭上车。Uber这么做了,所以成为了世界最大的出租车公司,但事实上没有一辆车是属于他们的。他们可以做到一年410亿美金的营收,而传统出租车公司现在的生存环境就有危机了。这样的商业模式冲击,我们在不同领域都可以看到。
大面积颠覆会发生在以下情况:第一,现有数据和新数据相互匹配提供新的见解;第二,数据分析涉及到移动数据、社交数据、云数据、游戏数据,并深刻理解客户,理解供应商。也就是说,假如你把数据的桥梁打通了,就能把行业给颠覆了。
我们看看这些应用案例:
一、脸识别系统。从进门那一刻,人脸就被快速抓拍,通过人脸识别技术可以很明确地知道:这个人是谁,他将要去哪里。
二、上海街道上的一个监控系统。当行人走过来的时候,摄像机会抓取人脸,识别这个人是否在警方搜索通缉范围内。假设走过来的是嫌疑犯,他在通缉的名单里,系统会快速地把他定位。
三、伦敦地铁的一个系统。每个人走过时,系统会记载他走路的步频是多少,身体状态好不好。这个案例已经落地了5年。
现在有非常智能的牙刷,每天记录你在什么时候刷牙、刷牙是否到位。如果不到位,它会把信息直接传给你的牙医,所以物联网很多应用产生的数据都会影响到你的消费需求。
对很多大公司来说,他们认为自己某种程度上受到政府和法律法规的保护,觉得自己不可战胜。他们说的最多的一句话就是“不,我不想改变”。但是对小的公司来说,任何一个机遇或者创新点对他们来说都是:“是的,我可以改变”,所以机会也许在他们身上。
这个世界是一定要被改变的。你要问自己的是,是改变这个世界,还是让这世界的一部分人来改变你。德国一家非常大的ERP公司预测说,未来很多曾经位列世界500强的企业会消失,全球有40%像泰坦尼克号一样的顶级企业会掉下来。新兴的企业会出来,这个趋势不会停止,大公司会以越来越快的速度消亡,新公司会以越来越快的速度前进。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28