京公网安备 11010802034615号
经营许可证编号:京B2-20210330
运营商的大数据问题出在哪_数据分析师
大数据已经从概念阶段上升到了实际使用阶段,越来越多的企业在通过大数据进行产品开发和营销指导,而通信运营商也开始对手里握着的金矿感兴趣。
不过,就如同以前很多业务开发一样,运营商掌握资源不假,但能否被资源变成产品却是未知数。在大数据应用中也是一样,运营商们仍在逡巡。
毫无疑问,运营商们手中的大数据无与伦比,甚至比互联网巨头们还要多,只是,要想把这些数据利用起来,却不如互联网公司容易。
运营商数据积累时间长但质量不佳
与互联网公司相比,运营商手中的数据更具有普遍性,甚至几乎囊括了所有的社会个体,可是由于运营商多年来经营业务相对集中,数据主要与通信消费行为领域相关,数据的范围相对较窄,在使用上受限很大。
此外,运营商们在开始积累数据的时候就不够长远眼光,因为数据数量过大,存储成本过高,运营商们曾经处理掉很多现在看来非常宝贵的数据,这些都不可能再生。
在数据结构上,运营商们原来存储数据主要用来作为向用户收钱的证据,对于与收钱关系不大的项目往往很少留存,这样就造成了很多数据缺陷,而这些缺失的数据对于大数据应用看起来更重要。
可以这样讲,阿里巴巴早就想好用数据来赚钱,所以处处留心收集和积累数据,当时机成熟的时候就会推出相应的数据产品,而运营商原来只想着用数据来算钱,到了需要用数据挣钱的时候就发现自己原来丢掉了西瓜。
场景不够,缺乏突破点,不知道大数据应用到何方
运营商们多年以卖卡收话费为生,与用户的接触主要是收取话费和做好服务,专业化非常强,对商业社会的各个方面了解缺乏,手中有数据也不知道应该用到什么地方。
互联网公司早已经脱离的原有的业务概念,纷纷交叉跨界,在面向社会的方方面面布局业务,这也就由此产生了对相关数据的现实需求。比如,阿里巴巴开始要做好电商,就需要分析卖家和卖家的行为数据,以便通过精确营销和广告等数据应用赚取收入,后来,为了堵住刷单、治理造假等行为漏洞,更是要通过数据分析来检测和治理,进入互联网金融领域之后,要进行信贷客户的信用评价和行业景气预测,电商大数据就更有了新用场。
与互联网公司全面布局不同,运营商的业务范围很窄,即便有些非通信业务,也几乎用不到通信行为数据等进行分析使用,所以,这些数据怎么用,自己首先都没有用处,也就难以发现在社会上的新应用前景和创新点,只能跟着互联网公司创新的步伐去模仿。
不做铺垫,不去造势,缺乏应用的成功案例
很多人都知道,百度与央视在春节期间推出的春运迁徙大数据,通过形象的数据展示全国人民回家过年前后的交通情况和旅游状态。蚂蚁金服更是在今年的6月6日提出建设中国信用日的概念,通过多个超市信用消费来获得了社会广泛关注。
这些活动看起来都具有公益性质,几乎不会有任何的收入,可是,正是通过类似的被大家普遍关注的社会事件,这些公司的大数据能力和产品得到了社会认可,为未来这些能力的变现提供了最好的社会启蒙教育。
在央视的节目中,原中国移动的董事长也介绍,中国移动在几年前就曾经通过大数据分析的方法为政府处置某地火车站滞留旅客问题发挥了关键性作用。但是,这些的事件也仅仅停留在公司内部的功劳簿上,公司因为种种原因都不会对外公开,社会上根本就不知道运营商能通过大数据做到哪些服务,更谈不上有更深入的项目合作。
数据不统一,难以发挥整体性的作用
由于历史和现实的原因,运营商的数据还存在自身缺陷,这些缺陷严重制约了大数据的使用,在机制和体制解决之前,都很难有本质上的改变。
首先,运营商是分级管理的,集团公司、省公司、市公司、县公司,逐级展开,特别是在省公司层面,各地运营几乎独立,各地的支撑系统都不是来自一家供应商,数据结构存在差异,且很难统一。
其次,即便数据可以通过系统建设实现全景视图,但在分级管理平台分隔的情况下,大数据应用时依然很难整体操作。数据不是分割的,但人是分隔的,在解决一些全局性问题的时候就无能为力。
还有,作为运营商,首先考虑的问题不是如何利用数据,而是要保护数据的安全。保护数据安全是所有拥有数据的企业和单位义不容辞的责任,可互联网公司更具有使用数据的冲动,也更敢于探索数据使用新场景,而运营商却将安全置于过重的地位,甚至为此畏首畏尾,自然浪费了好多资源。实际上,只要使用得当,完全可以做到兼顾安全与使用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09