京公网安备 11010802034615号
经营许可证编号:京B2-20210330
创新大数据时代的网络舆情管理_数据分析师
随着移动互联网、物联网等新技术的迅速发展,人类进入数据时代。大数据带来的信息风暴正深刻改变我们的生活、工作和思维方式,对网络舆情管理也带来深刻影响。
一、大数据时代网络舆情管理面临的新形势
大数据意味着人类可以分析和使用的数据大量增加,有效管理和驾驭海量数据的难度不断增长,网络舆情管理面临全新的机遇和挑战。
1.大数据带来网络舆情管理新挑战。一是海量数据的挑战。海量的网上信息难以掌控,大量相关性、偶发性因素使舆情更加复杂多变,传统的舆情监测研判手段和方法难以奏效,新的技术手段和方法要求更高。二是信息选择性传播的挑战。网上数据无限性和网民关注能力有限性之间的矛盾,加剧了社会舆论的“盲人摸象”效应。社会化媒体促进信息的开放和沟通的便捷,分众传播、个性化传播凸显,使偏激的观点更容易找到“同类”,从而相互支持、强化放大,加剧舆论偏激情绪。三是舆论话语权分散的挑战。大数据时代各类数据随手可得,越来越多的机构、个人通过数据挖掘和分析得出的各种结论会不胫而走,有效管理舆情的难度越来越大。
2.大数据带来网络舆情治理新机遇。一是拓展网络舆情治理领域。在“一切皆可量化”的大数据浪潮中,网络逐渐成为现实世界的“镜像”,网络社会与现实社会日益融为一体,网络舆情管理不再局限于网上言论领域,而必须全面掌握网络舆情运行规律及其与现实社会的相互影响,实现网上网下充分联动、协调共治。二是丰富网络舆情管理手段。运用大数据技术,可以从更宽领域、更长时段对网上舆论进行比对分析,更加准确地把握网民情绪特点,预判舆情发展趋势,提高舆情管理的效能。三是推动网络舆情理论研究工作。借助大数据分析,舆情研究的视角将更加多元化和精确化,改变目前舆情研究“策为上、术为主、学匮乏”的尴尬学术现实。
3.大数据提出网络舆情管理新要求。一是由关注个案向整体掌控转变。传统的网络舆情管理侧重于针对重大舆情事件个案的管理,大数据则能够更好地把握网络舆情发展的整体态势。二是由被动响应向主动预测转变。大数据的核心是预测,在海量的数据中通过分析,发现背后隐藏的微妙的关系,从而预测未来的趋势,提前部署预防应对。三是由定性管理向定量管理转变。将所有相关信息,包括网民评论、情绪变化、社会关系等,以量化的形式转化为可供计算分析的标准数据,通过数据模型进行计算,分析舆情态势和走向。
二、用大数据思维创新网络舆情管理
创新大数据时代的网络舆情管理,要将大数据理念和手段贯穿始终,做到“五个结合”。
1.将大数据和社会治理紧密结合起来,改进网络舆情源头治理。网络舆情本质上是社情民意的体现,加强网络舆情管理就是加强社会治理。要运用大数据强大的“关联分析”能力,构建网络舆情数据“立方体”,把网上网下各方面数据整合起来,进行分析,挖掘网络舆情和社会动态背后的深层次关系,实现网络舆情管理和社会治理的紧密联动、同步推进。
2.将大数据和网上政务信息公开紧密结合起来,提升政府公信力。当前,美国政府已经建立统一的数据开放门户网站,并提供接口供社会各界开发应用程序来使用各部门数据,此举将政务公开从“信息层面”推进到“数据层面”,开辟了政府信息公开的新路径。我们要在保障数据安全的基础上,探索建立我国的大数据政务公开系统,引导社会力量参与对公共数据的挖掘和使用,让数据发挥最大价值。
3.将大数据和日常舆情管理紧密结合起来,提高网络舆情整体掌控能力。美国纽约市警察局开发了著名的ComStat系统,通过分析历史数据绘制“犯罪地图”,预测犯罪高发时间和地点,从而有针对性地加强警力配置,获得巨大成功。这种“数据驱动”方法,对网络舆情管理有一定的借鉴意义。要运用大数据突破传统舆情管理的狭窄视域,建立网络舆情大数据台账系统,实时记录网站、博客、微博、微信、论坛等各个网络平台数据,全面分析舆情传播动态,从瞬息万变的舆情数据中找准管理重点、合理配置资源,提高管理效能。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23