
北京将借助大数据技术打击非法集资活动
“你盯着别人的利息,别人盯着你的本金。”在很多非法集资案曝光后,落进了利益陷阱的受害者才恍然大悟。北京市网信、金融部门近日召开会议透露,截至2015年5月,北京全市各类非法集资案件累计221件,涉案金额360亿元,涉及投资人27.6万人。今年前5个月,北京市新发非法集资案件51件,涉案金额33亿元,涉及投资人2900余人,同比增长64.5%。
今年1月22日上午,北京P2P网贷平台“里外贷”对外发布消息,“由于借款人未能归还款项并失联,该平台已无力继续垫付,平台将采取报警处理,自今日起里外贷暂停一切业务。”据报道,当时“里外贷”平台面临9.34亿元兑付账款。“里外贷”是北京已立案的四家P2P类非法集资案件之一。截至2015年4月,北京共出现20家P2P网贷问题平台,包括经营困难、诈骗、跑路等现象。已立案中欧温顿、网金宝、融信宝、里外贷四家P2P类非法集资案件,总计涉案金额约17亿元,涉及投资人4230人。
这类案件假借P2P名义非法集资,设立所谓P2P网络借贷平台,以高利为诱饵,采取虚构借款人及资金用途、发布虚假招标信息等手段吸收公众资金后,突然关闭网站或携款潜逃。据通报,在非法集资案中,私募股权投资基金类、P2P网贷类、投资理财类案件呈爆发态势,通过互联网进行非法集资活动已成为新趋势。非法集资项目推介的主渠道也向线上转移,犯罪手段不断翻新,支付方式更加多元,扩散速度不断加快,犯罪活动周期大大缩短。但当管理人意识到难以为继时,往往选择隐匿资产、销毁证据、甚至潜逃等方式规避打击,给案件侦破和处置带来极大困难。
对此,北京市今年4月起,开展打击非法集资专项整治行动,持续到8月,将重点打击整治一批情节严重、社会影响恶劣、扰乱首都金融秩序的非法集资机构。此次专项整治行动将突出重点,针对私募股权投资、投资咨询、第三方理财、电子商务、网络借贷、担保、小额贷款、保险代理、第三方支付、要素市场、外汇期货交易等非法集资案高发的重点行业;金融机构从业人员参与“飞单”等重点行为;互联网广告、小广告、短信息、小摊位等重点载体。
针对通过互联网进行非法集资活动的新趋势,北京还将创新手段,借助大数据技术提高打击效果。北京市打非部门介绍,将依托互联网、大数据等高科技手段,建设打击非法集资监测预警平台,全天候无缝隙监控非法集资活动。北京市网信办和首都互联网协会要求,属地各主要网站要积极配合专项行动开展,承担社会责任,履行承诺义务,排查非法集资广告,做好相关政策法规宣传。
此外,针对近期有单位、个人以“银谷银行”的名义在北京从事经营活动,在广告材料中使用“银谷银行”的标识,北京市银监局发布风险提示:从未批准设立“银谷银行”,也从未向任何单位和个人颁发过含有“银谷银行”字样的金融许可证。北京市银监局提醒市民高度警惕并注意防范类似的虚假信息,谨防因上当受骗遭受不必要的损失,发现有关单位或个人涉嫌从事违法犯罪活动的,应及时向当地公安机关报案或向主管机关反映。
非法集资典型手法
随着互联网的崛起,利用网络实施非法集资的手法花样翻新,主要有以下6个典型手法:
假冒民营银行的名义,借国家支持民间资本发起设立金融机构的政策,谎称已经获得或者正在申办民营银行的牌照,虚构民营银行的名义发售原始股或吸收存款。
非融资性担保企业以开展担保业务为名非法集资:发售虚假的理财产品;虚构借款方,以提供借款担保名义非法吸收资金。
打着境外投资、高新科技开发旗号,假冒或者虚构国际知名公司设立网站,并在网上发布销售境外基金、原始股、境外上市、开发高新技术等信息,虚构股权上市增值前景或者许诺高额预期回报,诱骗群众向指定的个人账户汇入资金。
以养老的旗号非法集资:以投资养老公寓、异地联合安养为名,以高额回报、提供养老服务为诱饵,引诱老年群众“加盟投资”;举办所谓的养生讲座、免费体检、免费旅游、发放小礼品方式,引诱老年人群众投入资金。
以高价回购收藏品为名非法集资,以毫无价值或价格低廉的纪念币、纪念钞、邮票等所谓的收藏品为工具,声称有巨大升值空间,承诺在约定时间后高价回购,引诱群众购买。
假借P2P名义非法集资,即套用互联网金融创新概念,设立所谓P2P网络借贷平台,以高利为诱饵,采取虚构借款人及资金用途、发布虚假招标信息等手段吸收公众资金
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28