
名创优品:大数据时代的创新者_数据分析师考试
近日,中国首个大数据交易所在贵阳挂牌营业,与此同时“贵阳国际大数据产业博览会暨全球大数据时代贵阳峰会”胜利召开。除国家主要领导人发来贺电,或亲临现场致辞外,现场还来了三位中国工程院院士以及10个国家的驻华代表,马云、马化腾、雷军、周鸿袆等知名互联网企业领军人物悉数到场并发言,如此高规格地召开,让人不禁要问:为啥大数据火了?
大数据不仅是互联网时代的产物,同时也是互联网时代的动力。根据国际数据公司(IDC)的研究,2005 年企业存储的结构化数据为4EB,到2015 年将增至29EB,年复合增长率逾20%。非结构化数据发展更猛,2005 年为22EB,2015 年将增至1600EB,年复合增长率约60%,远远快于摩尔定律。同时全球64%的企业已成为数字化转型的探索者和实践者,“全方位的客户体验、灵活高效的业务流程、智慧化的产品与服务、创新的商业模式”已成为新的数字化转型战略的核心,而这一切的基础就是大数据。
零售行业品牌们如何形成及应用大数据?这是一个摆在互联网+时代的关键问题和机遇。笔者就此问题跟踪研究在大数据挖掘与应用走在零售行业前列的日本快时尚设计师品牌名创优品。研究发现,名创优品把自有的和合作单位提供的客户数据、客户行为数据、市场销售数据、社交媒体数据、供应链数据、物流数据等海量、多样的原始数据,以合作形式委托国际知名的大数据挖掘处理团队,结合自身业态深层挖掘,再把挖掘成果优化订单处理、产品设计与制造、原料处理和终端零售等业务环节,用环节的最优解来不断挑战产品价格和成本的极限。
大数据优化订单处理,名创优品紧扣消费者细微需求变化。消费者需求是随时在变化的,如果企业不能把握这种变化,将会被市场无情地抛弃。在过去,也即工业2.0或者3.0时代,很多企业会聘请专业市场调研公司通过抽样的办法来把握这种变化。但由于种种原因,这种抽样调研常具片面性,无法把握消费者真实需求,更别谈体察消费者细微需求变化了。而互联网科技给现代商业带来了大数据,只要企业充分利用好大数据是可以紧扣消费者细微需求变化的。因此名创优品专门成立大数据处理部门,通过挖掘海量的消费者购买数据,把握和预测消费者需求的细微变化。
大数据优化产品设计与制造,名创优品挑战最具性价比商品。在把握和预测消费者需求的细微变化后,名创优品会把全球各地市场的需求数据汇集到日本设计总部。让设计师们根据这些数据设计满足这些需求的产品,然后再把设计成果分发至各国市场遴选优秀的生产制造。大数据既确保了设计师足不出户,了解和把控需求变化,接上地气,同时也缩短设计与制造周期,让名创优品成为真正的快时尚。
大数据优化原料处理,名创优品实施全国最优采购方案。追求更低价格更优质的原料是每个供应商既可保证竞争力又可获得赢利的梦想。如何才能做到?唯一破解办法是在期货市场先人一步,拥有议价权。名创优品通过大数据技术提前预制全球产品相关原料动态,结合对市场需求变化洞察力备注生产海量的优质低价原料。
大数据优化终端零售,名创优品专为消费者私人定制。基于大数据在订单处理、产品设计与制造、原料处理等技术红利,名创优品摆在货架上的每一件产品都紧紧锁定消费者需求,且高质量、高效率和高科技的产品本质冲决着低成本、低毛利、低价格的购买体验。终端零售广告问题已在名创优品营销体系中无情剔除,且这剔除成本再在价格上返利消费者,N倍当量超出消费者预期,形成良好口碑传播效应。
名创优品之所以能领衔零售行业,成为各种商业地产宠儿,成为每个市场消费者热捧对象,笔者以为这是与其互联网基因密不可分,其中大数据技术更是功不可没。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10