京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如果你通晓宽客的语言,一切好说(例如凯撒娱乐(CaesarsEntertainment)的加里·洛夫曼(GaryLoveman),麻省理工学院博士;亚马逊的杰夫·贝索斯,普林斯顿大学电气工程、计算机专业学士;谷歌的谢尔盖·布林和拉里·佩奇,斯坦福大学计算机专业博士肄业);但一般高管的数学和统计学知识还停留在大学本科水平。或许你能熟练使用电子表格,看懂条形图和饼状图,但如果碰上复杂的数据分析,你的数学恐怕不够用。
如今大数据已全面介入决策制定,这场革命中的你,如何自我定位?如何避免失败的命运,带领企业力争上游,至少不落伍?本文根据大量高管采访写就,结合了笔者的教学与咨询经验,可为数盲管理者提供基本参考。
首先要记住,作为数据分析的实际使用者,你的任务是判断模型与现实的相符程度。承担这一重要职责,需要管理者进行自身调整,转变心态和思路,并适当补充专业知识。具体来说,可以从下列五方面着手:
一、开始补课
要想听懂宽客在说什么,最好记得大学统计学的基本内容,否则需要去补补回归分析、统计推断和实验设计的课。你应该理解推出结论的过程,并适时质疑模型假设是否站得住脚。(参见边栏“从数据分析到决策制定——六大关键步骤”。)
二、找到合适的宽客
卡尔·肯普夫(KarlKempf)是英特尔工程决策团队的负责人之一,人称“超级宽客”。他常常说,高质量的定量决策“无关数学”,而全在于“关系”。分析师和决策者需要深层次的相互信任,能够自由地交换信息,沟通想法。
不过众所周知,沟通往往不是技术人员的强项。有人曾打趣说,“你跟宽客说话的时候,十个有九个盯着自己的鞋,剩下那一个盯着你的鞋”。话虽如此,能正常沟通的分析师大有人在:宽客不都是数学狂人,也愿意在商界大显身手。
三、抓好首尾环节
正确提出问题是大数据决策最重要的一环,最考验你的经验和直觉。但假设终归只是假设。严谨的分析方法能检验,你提出的假设是否如实描述了世界的运转。
此外,还需关注大数据管理流程中的最后一步:向其他高管呈现分析结果。很多分析师不注重沟通,有时你必须亲自出马。数据分析实际就是“用数据讲故事”。
四、多提问
美国前财政部长劳伦斯·萨默斯曾在一家量化对冲基金担任顾问。他告诉我,那份工作的主要职责就是“找茬”:向智力过人的分析师提出有挑战性的问题,促使他们重新审视自己的假设和模型。经受这样的考验,会使分析团队反省和改进他们的工作。
比如几个基本问题供参考:
1)你的数据来源是什么?
2)样本在多大程度上精确反映总体?
3)样本是否包含异常值?对结果有何影响?
4)你的分析依据哪些假设?在哪些情况下假设可能不成立?
5)为什么你选择了这种分析方法?有没有可能使用其他方法?
6)是否有可能错把非独立变量当成了独立变量?其他分析模型有可能更清楚地揭示因果关系吗?
五、鼓励质疑
我们都知道,数字会说谎,骗子最喜欢用数字骗人。永远不要指挥分析师:“看看能不能用数据支持我的想法。”相反,应树立尊重事实的风气。如默克集团分析团队负责人所说:“管理层希望我们以中立、客观的精神,只为股东利益服务。”
很多资深管理者乐于看到分析师在决策过程中唱反调,期望形成鼓励质疑的企业文化,让预测模型越来越精确。加里·洛夫曼也是质疑文化的倡导者:“在所有人都拼命讨好上司的地方,更有必要树立实事求是的风气。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27