
我国大数据产业发展现状分析
我国大数据产业发展目前还处于起步阶段,业界对于大数据产业的立法保护呼声甚高。一些专家认为,目前就大数据单独立法条件尚不成熟,政府部门应在推进规划引导、完成标准制定、优化完善大数据发展环境等方面发力。但需注意以需求为导向,避免陷入以技术为驱动的信息化发展怪圈。
随着大数据挖掘分析的愈发精准,应用领域不断扩展,个人隐私保护和数据安全变得非常紧迫。近两年来,我国大数据产业发展的宏观政策环境不断完善,在推动行业发展和保护个人隐私方面起到一定作用。
2013年6月工信部发布《电信和互联网用户个人信息保护规定》,根据《全国人民代表大会常务委员会关于加强网络信息保护的决定》,进一步界定了个人信息的范围,提出了个人信息的收集和使用规则、安全保障等要求,为大数据应用中的个人信息保护设立了法律法规屏障。2014年10月,最高人民法院发布《关于审理利用信息网络侵害人身权益民事纠纷案件适用法律若干问题的规定》,进一步细化了网络服务商的责任,加大了对被侵权人的司法保护。
工信部电信研究院专家指出,在隐私保护方面,现有的法律体系仍面临两大挑战:一是法律保护的个人隐私主要体现为“个人可识别信息”(简写PII),但随着技术的推进,以往并非PII的数据也可能会成为PII,造成保护范围变得模糊;二是以往建立在“目的明确、事先同意、使用限制”等原则下的个人信息保护制度,在大数据场景下变得越来越难以操作。而我国个人信息保护、数据跨境流动等方面的法律法规,仍需进一步配套健全,这成为制约大数据产业健康发展的重要因素之一。
工信部总工程师张峰说,根据工信部2014年的立法工作安排,目前没有直接涉及大数据产业的立法项目。记者走访多位业界专家了解到,尽管对于大数据相关产业的立法呼声颇高,但目前单独立法条件并不成熟。
针对目前我国大数据发展中面临的种种问题,中国工程院院士邬贺铨、国家信息化专家咨询委员会常务副主任周宏仁等认为,当务之急是制订国家大数据发展战略,从国家需要和应用角度出发制订大数据的发展规划,尽快出台《信息保护法》和《信息公开法》,紧紧抓住大数据时代到来的重大机遇。
具体操作上,中央网信办政策法规局副巡视员尤雪云、孙佑海等建议,将大数据产业涉及的法律法规纳入网络安全、个人信息保护的立法内容中。以“网络安全立法”为范畴建立网络数据信息安全保护制度,着重解决网络数据信息安全保障问题,依法确立“明确责任主体、完善自律机制”的原则,明确相关机构的责任边界。
专家强调,数据收集机构对于数据安全和个人隐私保护的责任需进一步明确。孙佑海说,对于网站、银行、医院等数据信息集中的机构单位,应从法律层面要求其保护客户信息,严禁滥用,严禁外泄。要严肃追究将数据信息流向境外的单位和个人的法律责任,单位与泄密人之间要承担连带责任。
专家还建议,在“网络安全立法”的框架下,建立重点岗位和人员的特殊保护制度。要求国家机关、涉及国计民生的行业以及数据信息集中的互联网企业等,确定网络信息安全保护的重点岗位和人员,明确保密义务和责任,加强网络舆情分析、网络内容监管、网络攻击应对、网络应急保障等方面的专业技能培训,提高网络信息安全保护能力,实施严格的网络信息安全保护措施。例如,要求重点人员不得使用国外生产的手机、存储设备、操作系统等软硬件,坚决防治网络泄密。
此外,中国计算机学会计算机安全专业委员会主任严明指出,应依法整合互联网相关机构的管理职能,建立健全具有中国特色并高效运行的网络信息安全管理体制,以法律形式明确规定各个网络信息管理职能部门的职权和责任,尤其是网络信息安全执法部门,完善各主管部门在维护网络信息安全工作中的主从关系和协同配合机制,形成从技术到内容、从日常安全到打击犯罪的互联网管理合力,确保网络的正常运行和网络信息安全管理
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10