
大数据分析领袖SAS与华为建立联盟合作关系
2015年6月8日,全球领先的商业分析软件与服务供应商SAS公司宣布与全球领先的信息与通信解决方案供应商华为宣布结为联盟合作伙伴,双方将在大数据事业发展道路上携手并进。
合作共赢,构建基于Hadoop的大数据生态系统
随着各行各业数据的累积,企业需要具备将原始数据转化为全新洞察力的能力。SAS与华为的合作,旨在发挥各自强项,共同打造针对不同行业的大数据解决方案。作为高级分析领导者,SAS一直占据全球高级分析软件市场第一主导地位,其大数据分析技术和传递的卓越洞察深受企业信赖。SAS除了为产品配备强大的分析能力,还将与华为共享在金融服务业等核心行业丰富的实践经验。
二者的合作将以Hadoop生态圈的不断成长为契机,整合Hadoop架构与SAS分析的优势,实时分析处理数据,从而获取精准洞察。SAS能够将大量且复杂的精密运算应用到Hadoop集群,支持Hadoop完成整个分析生命周期,包括数据访问和管理到探索、建模和部署。SAS通过SAS® Hadoop数据加载器、SAS/ACCESS® Interface to Hadoop、SAS® In-Memory Statistics for Hadoop、SAS可视化分析(SAS® Visual Analytics)以及SAS高性能分析(SAS® High-Performance Analytics)等一系列基于Hadoop的解决方案及产品将分析的力量与Hadoop相结合,释放大数据真正的价值。
Hadoop提供了开放、高效且部署灵活的数据存储方式,而SAS与华为的合作将帮助企业用户发现难以发现的洞察。企业可以基于数据做出科学决策,不再简单依赖直觉人工判断。同时这种合作还让企业使用全量数据进行分析成为可能,真正利用大数据,而非传统的小样本数据。SAS打造了可视化和互动性更高的Hadoop之旅,轻松展现趋势与洞察。SAS大中华区总裁吴辅世先生在谈及此次合作时表示:“我们越来越充分感受到中国企业对于大数据分析应用的迫切需求。华为深耕本地市场多年,在各行业均积累了深厚的客户基础,企业业务发展势头强劲并具有国际化视野,我们非常尊重和看好这样具有远见和洞察的企业。SAS与华为的共识合作将是SAS本地市场实践的重要里程碑。我们将与华为携手,依托Hadoop架构和前沿分析技术,从打造行业首选的大数据分析平台出发,持续创新,实现我们共同的社会责任。”
“大数据的应用为企业带来了业务数据化和数据业务化的新机遇,让数据来提升企业的业务效率。企业大数据应用有两个最基本的东西,一是高效的分布式处理引擎,另一个是企业的业务模型,华为大数据平台FusionInsight和SAS的业务模型是天然的优势互补,两者相加帮助企业轻松驯服任何形式的数据,将其转化为业务的价值。”华为IT产品线大数据领域总经理朱照生说道,“SAS公司是全球商业分析领域的领导者,相信我们双方的合作,可以帮助更多的中国企业用好大数据,产生实实在在的业务价值。”
FusionInsight:大数据融合与洞察
FusionInsight分析平台是SAS与华为合作的第一张答卷。FusionInsight是基于Hadoop架构的集大数据存储、查询、分析功能为一体的企业级平台,帮助企业快速构建海量数据信息处理系统。该平台包括海量数据引擎FusionInsight HD和实时数据处理引擎FusionInsight Stream两个核心组件,能够对高达百万维度的数据进行全量建模,进行实时分析和挖掘。华为与SAS在FusionInsight的研发、渠道拓展和市场营销方面展开合作。基于Hadoop框架上的SAS分析应用,FusionInsight在企业的精准营销、实时决策、客户维系、数据开放等各种应用场景提供全面的技术保障。
FusionInsight面向多个行业,可以在金融、通信、交通、公共安全等多个领域发挥流式事件实时处理优势,进行实时分析和决策。迄今为止,FusionInsight已在全球拓展了100多个大数据项目,有40多个项目已经在交付,其中10多个已经在商用。目前的主要应用领域为电信、金融、科研、公安和政府,客户包括中国工商银行、中国建设银行、招商银行、平安银行、上海移动,上海联通等。
中国工商银行运营团队通过华为FusionInsight大数据构建其日志分析平台,为SAS数据统计分析提供更精准的数据源,最终,在逸贷产品上锁定目标客户,建立准入评分标准,并根据评分提供不同额度的贷款;对商友客户进行评级,根据不同级别的客户进行不同的服务,并建立移动APP为客户提供随时随地的服务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20