
用友iUAP:应变“互联网+”时代的企业大数据管理与分析
企业运营模式在互联网+时代已经发生了革命性的转变,客户导向、实时运营、数据驱动。互联网化让企业从供应商、服务商、渠道商到客户,甚至最终用户都希望能够建立一个密切的联系。
并且伴随着互联网化的不断深入,企业也将越来越向着数字化发展。数据管理和分析数据的需求越来越大,而这需要多个平台配合解决。用友iUAP的数据平台和用友BQ商业分析平台则可以很好的支撑用户的不同需求,在互联网+时代快速帮助企业开展大数据管理和分析。
企业大数据管理发展进程
用友网络助理总裁,兼集团iUAP中心副总经理谢东指出,数字化的信息和处理能力是支撑企业互联网化的技术,企业各类数据的综合构成了企业在数字世界的完整画像,这也意味着企业需要从数据中挖掘价值。
用友网络助理总裁,兼集团iUAP中心副总经理谢东
随着企业业务应用的深化与外延,企业需要处理的数据在两个维度延伸,第一,处理数据类型的增加;第二,企业涉及的数据视野更广泛。在这样一个大数据的环境下,企业需要重新认识数据,从关键业务数据到一切都是数据;从关注自己的数据到关注所有相关甚至看似不相关的数据 ;从自己处理所有数据,到利用一切可以利用的处理能力。因此,企业现在需要解决自己的数据资产变现的问题,即价值如何最大化。
伴随着大数据的发展,企业开展大数据管理和分析需要经历不同的阶段。谢东认为企业要想做好大数据,需要管理好以下三方面,一是解决企业数据管理架构问题;二是解决企业大数据管理的技术问题;三是大数据应用的建设问题。
企业数据架构的选择思路要从一种架构支持所有应用,转变成多种架构支撑多种应用,针对不同应用场景选择不同的架构来解决相应的问题。像半结构化、非结构化数据处理要引用NoSQL、NewSQL,甚至Hadoop等新兴数据处理技术。
之后将进入数据管理阶段,分为孤立系统、数据集市、数据仓库以及统一元数据仓库几个阶段。分析应用的发展路径则会经历报表报告、交互分析、挖掘预测,最终到决策自动化四个阶段。
最后企业将开始大数据分析建设,并且需要遵循四个原则,业务驱动、自上而下、价值最大化、全员应用。
iUAP平台的全方位支撑
用友iUAP是面向大型企业的互联网开放平台,分为开发与集成、移动与社交、大数据、互联网与云服务四大部分,十二大产品。iUAP在应对数字化企业变革和企业大数据管理和分析上有两大平台:数据平台和用友BQ商业分析平台。
数据平台包括iUAP DI(数据集成)、iUAP CDC(实时数据集成)、iUAP AE(结构化数据引擎)、iUAP UDH(非结构化数据引擎)。CDC实现业务库与分析库秒级数据延时的同步;AE采用列存储技术,使查询响应提高10倍以上,并实现透明压缩;UDH基于Hadoop开源产品体系,实现大规模结构化、非机构化数据集成、分析处理和统一展现。
用友网络集团iUAP中心数据平台总经理李长山指出,基于数据平台企业可以做到数据整合,同时支持企业外部数据整合;通过列式存储技术加速分析;支持结构化、非结构化、半结构化数据处理、PB级分布式并行计算、离线和在线数据处理;对分析模型和业务模型统一建立和管理,以及元数据整体的传递;提供了相应的工具进行预测。
用友网络集团iUAP中心数据平台总经理李长山
目前AE的用户量要多于UDH,也间接反映出企业在数据管理和分析的应用还主要在结构化数据阶段。企业引入UDH会有很多考虑因素,用友加速UDH扩展的思路是提供企业管理器支持快速部署。当然企业也可以基于自身各方面能力自建,所以对企业而言AE可能是必选,UDH则是可选。
在数据平台之上,用友BQ商业分析平台是一个综合的商业分析平台产品套件。包含数据集成、分析引擎、多维展现工具、自由报表、移动分析等功能模块。
用友网络集团iUAP中心产品与技术与技术管理部商业分析产品经理王翀表示,用友BQ拥有实时数据分析能力,可以实现全程的可视化,在统一架构下处理结构化和非结构化数据,并进行数据挖掘,同时可以展现到移动端。以及通过对元数据的处理保证准确度,还可以将其嵌入到业务系统中。
用友网络集团iUAP中心产品与技术与技术管理部商业分析产品经理王翀
用友BI的未来发展也将围绕着敏捷BI和商业分析云展开。商业分析云的产品原型已经在设计阶段,同时还会有用户参与其中,目前看到最主要的用户需求包括自助、分享、离线三部分。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09