京公网安备 11010802034615号
经营许可证编号:京B2-20210330
浅谈P2P评级背后的“大数据”_数据分析师考试
P2P的发展,给国内的金融市场带来了翻天覆地的变化,同时,也为国内金融市场衍生了许多需求,比如第三方支付,比如担保公司,再比如评级。
据响当当从第三方了解的行业数据显示:截至2015年4月,全国有1819家运营平台,成交量达551.45亿元。去年4月份,运营平台数量为1073家,成交量为148.92亿元。可见,在过去的一年中,P2P行业的成交量翻了近4倍。
P2P平台数量迅速膨胀,他们在享受行业盛宴的同时,也饱尝残酷竞争之苦。“增信”是他们需要完成的重要任务,有的P2P平台大肆宣传自己与第三方支付公司的资金托管合作;有的平台打出自己与银行的“亲密关系”或干脆直接“抱大腿”;有的则狐假虎威的直接将一些机构的“评级结果”亮出来。
无疑,在跑路潮这个人心惶惶的P2P行情下,投资者面对鱼龙混杂的P2P平台,真正需要的是一些投资的指导和意见。而一份可靠公正的评级报告则是对平台的“雪中送炭”,而为平台加分不少。在过去的一段时间里,很多机构发布了各种各样“排名”、“黑名单”等评级报告。据了解,这些机构大多是自掏腰包完成报告的,他们“赔本赚吆喝”的背后是希望借助评级掌握P2P的行业话语权。
当前,P2P评级主要是针对平台的整体评级。有的评级机构会对平台进行深入调查,包括对平台自身的调查和向其他平台了解情况,但这样的机构并不多。不少机构采用的数据主要来自各种公开信息和P2P平台自行报送,这些数据的真实性和准确性有待考察。以坏账核算为例,目前各家平台对于坏账率的界定标准和计算方式差距较大。一般来说,P2P平台采用坏账总额除以贷款总额的方式核算坏账。逾期时间大多分为三个月、六个月、九个月、一年不等,各家平台逾期时间的选择并无统一标准,一些平台为了拉低坏账率故意设定较长的逾期时间。很多时候,评级机构并未对数据进行核实,或对平台实地调查,因此不少评级结果缺乏可信度和公信力。
其实,P2P评级面临的最大问题是数据获取。坏账率、利润、产品这些内容属于P2P平台的敏感数据,评级机构没有权利要求强制披露,只能基于信息可获取、可量化两个标准评出平台发展指数。在数据缺失的前提下,评价平台的安全性是比较困难的。
更为重要的是,P2P评级目前来说,很难形成可持续发展的商业模式。为什么呢?按照国外和债券市场的经验,评级应由被评价主体付费,即P2P平台自己来付评级费。但国内目前P2P平台很少主动要求做评级,其一,网贷平台不愿公开真实数据;其二,网贷平台不愿花这笔“冤枉钱”。而后出现的情况也就在意料之中了:很多P2P评级报告都是评级机构自己掏腰包做的,他们占领话语权、炒作提高知名度的诉求成为其他商业机会和利润来源。
很多人没有意识到这个问题的严重性,事实上这是一个很现实的问题。在此借用“没有买卖就没有杀害”好像不太恰当,但却很贴切。有供必有求。评级机构需要生存,所以找到买单者至关重要。响当当风控总监从业界内了解到内幕:“一些所谓的评级机构会追着平台做评级,只要平台花几万块钱,就能获得想要的排名。还有一些机构有"敲诈"嫌疑,平台如果不花钱,就给你弄个类似"黑名单"的东西。”也就是说,这些评级机构一边靠P2P公司养活,一边又给他们评级。这又爱又恨的关系使得这些公司或者机构在评级时很容易“感情用事”。
归根结底,鉴于国内的金融环境,P2P发展的核心始终取决于自身运营模式及风控手段。相较于其他互联网理财平台,响当当首创三重风控,典当兜底的风控模式,一切债券均有实物抵押,即使借款人对响当当逾期还款,典当行的“绝当品变现”机制,也能完美的避免响当当平台对投资人的违约。响当当典当合作,实物理财的互联网金融新模式,无疑在目前的P2P行业乱象内“出淤泥而不染,濯清涟而不妖。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07