
新华保险理赔大数据教您如何投保_数据分析师
国人购买保险的热潮日益升温,你知道应该给自己和家人构筑哪方面的风险保障吗?现代人生活压力加大,你知道威胁健康的重大疾病都有哪些吗?
日前,新华保险发布2014年理赔数据。通过大数据解读与分析,新华保险从专业角度为您个人保险的选择总结三大法宝:“首选重疾”、“必备意外”、“保额充足”。
从理赔总体来看,2014年新华保险个险理赔累计给付26.49亿元,较2013年增长19.16%;其中重疾和特种疾病的增幅最为显著,分别为29.55%和166.98%。
从理赔身故类分析,占比前三位分别为恶性肿瘤、意外事故、心脑血管疾病,因此,客户首要的保险需求是重疾、意外险。其中男性风险明显高于女性,男性应该有更高的保险意识,购买一定额度重疾和意外险产品。
数据显示,2014年,公司个险重疾赔付12982件,其中,恶性肿瘤赔付8410件,占比高达52%。女性患癌比例高于男性,易患癌器官中女性乳腺及生殖系统占比最高,女性购买保险应以选择重疾产品为主。
从重疾类型分析,在恶性肿瘤赔付种类中,乳腺恶性肿瘤的赔付占比最高,为17.67%;其次是甲状腺恶性肿瘤14.72%;第三是支气管和肺部恶性肿瘤11.43%。北京大学肿瘤医院2013年数据显示,目前癌症的5年生存率为37%,甲状腺癌5年生存率高达89%;其次是乳腺癌81%,常见的子宫/宫颈癌的5年生存率超过60%。赔付数据中数量占比较多的恶性肿瘤,5年存活率均较高,而早发现、早治疗和充足的经济支持是前提。
据卫生部信息中心统计,人的一生罹患重疾的概率高达72%,手术治疗的平均费用在10万元(不包括化疗费、营养费、收入损失等),88.32%的客户重疾保额低于10万,尚不能支持基本的治疗费用。
从重疾赔付金额来看,61.40%的重疾保额在0-5万,占比最高,仅1.69%客户重疾保额高于15万。从赔付年龄看,40-49岁客户重疾赔付占比最大,为40.52%,出险客户中年龄在30-59岁的占比达86.93%,该年龄客户是家庭经济收入来源的主力。
站在理赔角度,如何合理地规划保险?新华保险建议:一要首选重疾。因重疾呈现年轻化趋势,且年龄小费率低,健康状况好,易标准承保,因此宜尽早投保。同时,重疾险不应偏重于男性或女性,应为全家配备重疾保障。第二,必备意外。在身故赔付中,意外事故占比15.95%,因此在计划保险保障时,请务必配备意外险,尤其是风险较高的男性。第三,保额充足。从理赔数据看,大多数客户的身故/重疾保额在10万元以下,保障功能体现不明显,建议重新检视自己的保单,通过产品组合的方式,提升保障额度。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23