京公网安备 11010802034615号
经营许可证编号:京B2-20210330
监控大数据 论智能交通核心诉求及趋势
安全和便捷是核心
智能交通市场有着庞大的产业体系,涉及到的行业及企业也各有不同,但智能交通的建设和发展无非要解决的两个问题:一个是运行的安全,包括车辆的行使和停放安全、驾驶员和第三者的生命财产安全,以及空气环境的保护等;另一个是出行的便捷,包括发展和完善城市公共交通路网建设、利用大数据疏导交通拥堵等。
这两个问题之所以突出,是因为智能交通建设的节奏跟不上我国城市化发展和机动车数量快速增长的速度,导致交通拥堵和交通事故频发成为影响国民出行的核心问题。 所以发展智能交通保障交通安全、缓解道路拥堵、减少交通安全事故成为必然,也为行业市场带来巨大的商机。
安防企业是以视频监控为主的产业,在智能交通的建设中,为各地的交通部门提供各类定制化的解决方案。在各级交通运营管理中,这些监控设备为执法部门提供违章停车、打手机、闯红灯、压线、超速和无安全带、套牌等视频及图片证据,对交通环境的维护、交通信息的传播、突发事件的响应都起着重要的作用。
此外,通过结合地理信息系统和导航卫星定位等系统,在防范和打击犯罪活动、追捕犯罪嫌疑人方面提供可视化的空间和时间上的帮助,并且利用大数据、云计算等IT技术框架,在前端智能人脸抓拍、识别、检索和对比中为公安机关的刑侦工作带来方便。
目前,海康威视(002415,股吧)、大华股份(002236,股吧)、宇视、科达、高新兴(300098,股吧)等安企在行业应用上表现出色,凭借视频监控领域丰富的实践经验和技术积累,它们在停车场管理系统、高清卡口应用系统、高清电子警察应用系统、车入口控制与停车诱导系统、智慧监控平台、大数据及云存储系统等为公安交通部门提供完整的基于视频监控的智能交通解决方案。而随着公安联网及数据互联互通工作的持续推进,未来安防视频监控系统将作为子系统嵌入到整个地区智能交通的大系统中,对行业标准、入口接入、数据共享等方面提出新的挑战。
除此之外,在车辆主动驾驶系统及辅助系统的研发中,某些安企也投入精力进行市场的培养和开发,但目前市场的接受度并不高,系统所能提供的服务与其本身的市场价值还不匹配,无法满足消费者的刚性需求。
智能化和大数据技术是趋势
智能交通建设和运营的过程中,将产生越来越多的视频监控、卡口电警、路况信息、管控信息、营运信息、GPS定位信息、RFID识别信息等数据,每天产生的数据量可以达到PB级别,并且是指数级的增长。虽然绝大部分数据是“沉睡的数据”,但按照相关规定,需要对数据进行有期限或无期限的保存,这无疑给用户在存储成本上带来压力,而通过监控摄像机前端智能技术和大数据分析技术的应用,很好地解决了行业用户的此类问题,给用户带来经济效益,同时也可以将工作人员从纷繁复杂的监控画面中解放出来。
目前,这两项技术正成为安防企业竞争的技术热点,在给甲方提供的解决方案中,往往能成为项目招投标中附加值中最大的亮点。
以大数据技术应用为例,据广州市交通部门透露,在近期的节假日期间,交通部门综合利用大数据平台,依靠多部门联动共享出行信息,从发生拥堵到“交通部门咨询现场”,再到发布信息并跟进解决问题,整个过程可以在短短的几分钟内完成。在交通行业,利用大数据技术,智能交通管理系统可以在海量数据、恶劣网络环境和复杂业务处理情况下,实现大量图片、车辆数据、视频数据的时时网络传输和快速持久化存储,同时对任意站点的图像进行显示,对任意站点的视频进行流畅播放、实时进行比对报警,快速进行多条件检索,并且将各类多媒体数据和车辆数据合二为一,在车辆套牌、公安刑侦等方面发挥重大的作用。
在具体的应用上,在城市的各种监控和卡口系统中,通过在后台接入海量的视频数据,并将这些数据进行二次识别,如在西部的一个城市应用上,仅用一个礼拜的时间内,就发现多达5万多条关于伪造、假牌和套牌等信息。未来,智能前端摄像机在算法优化及准确率提高之后,这些智能识别的速度会得到大大的提高。
而从整个智能交通的角度分析,大数据之于智能交通的意义,可以解决跨越行政区域的限制,实现数据信息的共享,在信息集成优势和组合效率上,有助于建立综合性立体的交通信息体系;另外在车辆安全、交通资源配置以及利用大数据的快速性和可预测性能提升交通预测的水平都有极大的帮助。不过,大数据技术目前也存在着巨大的挑战,例如行业数据的安全、视频数据的非结构化转换、模型有效性等都需要持续的探讨和解决。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07