
中国离大数据“潮头”还差几步_数据分析师培训
“在中国,数据正日益成为决策的依据,创新的源泉,推动从制造到创造的转变。”阿里云总裁胡晓明在此间举行的“2015贵阳国际大数据产业博览会暨全球大数据时代贵阳峰会”上这样表示。与会的企业家和专家认为,中国发展大数据产业力度空前,但在新一轮技术变革中,要想勇立“潮头”,还需突破“各自为战”和“一哄而上”等障碍。
从IT到DT,中国的步伐越来越快
“从每一代信息技术变革来看,中国的步伐是越来越快。”京东大数据部副总经理邢志峰说,在传统的IT时代,中国是西方的“追随者”,不断学习先进的技术。在移动互联网时代,中国与国际社会“并驾齐驱”,其中腾讯、阿里巴巴等企业与国外同类企业不相上下。进入“互联网+”的DT时代,中国一些大数据企业和人才甚至处于国际“领跑”地位。
他说:“中国拥有全球最大的人口基数和数据量,背后的‘数据金矿’也最大。以前非常向往国际大企业的大数据人才,现在愿意在国内的企业发展。”据预测,2020年中国数据总量将达到8.4ZB,占全球数据总量的24%,届时将成为世界第一数据大国和“世界数据中心”。
业内人士认为,随着宏观产业环境的不断优化,中国大数据产业链正在加速形成。众多互联网企业围绕大数据展开的技术研发、应用创新取得进展,医疗卫生、金融、交通等传统行业也在积极利用大数据进行有效探索。
记者了解到,中国部分互联网公司在大数据应用方面处于全球领先水平,他们建立了大数据平台,在分布式系统、超大规模数据仓库、深度学习等关键技术上有所突破。数据采集。存储、处理、分析、服务的大数据产业体系日趋成熟。
工业和信息化部副部长怀进鹏在会议上表示,当前中国“无论是技术储备、产业基础和政策发展环境,都为大数据、云计算的发展创造了先机,也做好了重要的支撑和基础。”
强劲势头中存隐忧
此次博览会云集了来自北京、上海、浙江、贵州等地的上百家大数据企业。企业家们在畅想中国大数据前景时,对当前各地发展大数据产业“各自为战”和配套设施“一哄而上”的局面表示了担忧。
胡晓明说,现在各地互联网数据中心建设存在泛滥现象,有的地方,市、县、乡都在搞大数据、云计算,“全民大数据”容易导致新一轮的硬件建设,造成资源浪费,对数据集聚有负面作用,“并不是建起了数据中心就有数据”。
一些专家指出,在全球金融市场低迷、中国经济转型的背景下,发展大数据产业是一种“现实选择”。不少欠发达地区对此寄予“弯道超车”厚望,各地自行探索难以形成合力,发展过程中容易出现重复建设,对大数据产业健康发展埋下隐患。
同时,政府部门信息共享和公开,以及涉及个人隐私和商业机密的专门法律法规和政策环境不够完善。政府和垄断部门的信息共享和开放程度不够,众多“信息孤岛”造成大数据产业的数据资源不够丰富。而企业拥有的大数据技术和计算能力却无用武之地,陷入“巧妇难为无米之炊”状态。
在记者采访中多家企业反映,即使拿到公共大数据,但由于政府部门条线分割严重、缺乏数据存储规范标准,这些数据十分杂乱,融合成本高昂,企业难以承受。“很多记录下来的数据没有规范化,也没有对数据存储进行设计,即使在同一个行业,数据也是‘一人一个模样’。”百度大数据部副总裁陶海亮说。
香港城市大学教授马建和中国信息协会大数据专委会副主任委员文金言认为,目前中国大数据产业距离“潮头”的差距还表现在大数据处理工具是“他山之石”,一些知名企业用的都是国外的数据处理技术,自主核心技术突破还有待时日。
清晰定位防其“野蛮生长”
确立大数据思维被认为是突破大数据发展障碍的重要抓手。有专家指出,当前一些地方政府缺乏“数据治理”意识,形成了做决策靠经验判断的惯性思维。一项针对我国主要部委信息化部门的调查显示,近4成的部门负责人没有意识到大数据可以帮助提升业务能力。
此次产业博览会上,一些与会者提出,政府应制定清晰的大数据、云计算顶层设计。从数据主权、数据创新能力、关键技术、人才、数据研究、覆盖全行业的产业链、法制环境支持等关键要素入手,研究大数据发展趋势,评估大数据对政府、经济与社会运行所带来的革命性影响
同时,制定未来5年或更长时间的发展目标、发展原则、关键技术、重点任务、行动计划和保障措施等规划,以协同政府各部门、各行业主管单位、企事业单位和个人等各方面的力量,形成共同发展的氛围。
邢志峰说,解决“信息孤岛”问题,最为迫切的是政务公开,“越多政务数据被公开,就会创造越多的机会和价值”。政府应加快推进数据的分级和公开,同时采用政府购买服务的方式,带动数据资源成为社会治理,优化城市管理和经济决策的重要资源。
国家信息中心专家委员会副主任宁家骏认为,各地数据中心的建设规模应以产业实际需求为导向,做到精细化设计,针对性开发,促进大数据产业形成良好、可持续的发展生态环境,而不是任其“野蛮生长”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10