京公网安备 11010802034615号
经营许可证编号:京B2-20210330
中国离大数据“潮头”还差几步_数据分析师培训
“在中国,数据正日益成为决策的依据,创新的源泉,推动从制造到创造的转变。”阿里云总裁胡晓明在此间举行的“2015贵阳国际大数据产业博览会暨全球大数据时代贵阳峰会”上这样表示。与会的企业家和专家认为,中国发展大数据产业力度空前,但在新一轮技术变革中,要想勇立“潮头”,还需突破“各自为战”和“一哄而上”等障碍。
从IT到DT,中国的步伐越来越快
“从每一代信息技术变革来看,中国的步伐是越来越快。”京东大数据部副总经理邢志峰说,在传统的IT时代,中国是西方的“追随者”,不断学习先进的技术。在移动互联网时代,中国与国际社会“并驾齐驱”,其中腾讯、阿里巴巴等企业与国外同类企业不相上下。进入“互联网+”的DT时代,中国一些大数据企业和人才甚至处于国际“领跑”地位。
他说:“中国拥有全球最大的人口基数和数据量,背后的‘数据金矿’也最大。以前非常向往国际大企业的大数据人才,现在愿意在国内的企业发展。”据预测,2020年中国数据总量将达到8.4ZB,占全球数据总量的24%,届时将成为世界第一数据大国和“世界数据中心”。
业内人士认为,随着宏观产业环境的不断优化,中国大数据产业链正在加速形成。众多互联网企业围绕大数据展开的技术研发、应用创新取得进展,医疗卫生、金融、交通等传统行业也在积极利用大数据进行有效探索。
记者了解到,中国部分互联网公司在大数据应用方面处于全球领先水平,他们建立了大数据平台,在分布式系统、超大规模数据仓库、深度学习等关键技术上有所突破。数据采集。存储、处理、分析、服务的大数据产业体系日趋成熟。
工业和信息化部副部长怀进鹏在会议上表示,当前中国“无论是技术储备、产业基础和政策发展环境,都为大数据、云计算的发展创造了先机,也做好了重要的支撑和基础。”
强劲势头中存隐忧
此次博览会云集了来自北京、上海、浙江、贵州等地的上百家大数据企业。企业家们在畅想中国大数据前景时,对当前各地发展大数据产业“各自为战”和配套设施“一哄而上”的局面表示了担忧。
胡晓明说,现在各地互联网数据中心建设存在泛滥现象,有的地方,市、县、乡都在搞大数据、云计算,“全民大数据”容易导致新一轮的硬件建设,造成资源浪费,对数据集聚有负面作用,“并不是建起了数据中心就有数据”。
一些专家指出,在全球金融市场低迷、中国经济转型的背景下,发展大数据产业是一种“现实选择”。不少欠发达地区对此寄予“弯道超车”厚望,各地自行探索难以形成合力,发展过程中容易出现重复建设,对大数据产业健康发展埋下隐患。
同时,政府部门信息共享和公开,以及涉及个人隐私和商业机密的专门法律法规和政策环境不够完善。政府和垄断部门的信息共享和开放程度不够,众多“信息孤岛”造成大数据产业的数据资源不够丰富。而企业拥有的大数据技术和计算能力却无用武之地,陷入“巧妇难为无米之炊”状态。
在记者采访中多家企业反映,即使拿到公共大数据,但由于政府部门条线分割严重、缺乏数据存储规范标准,这些数据十分杂乱,融合成本高昂,企业难以承受。“很多记录下来的数据没有规范化,也没有对数据存储进行设计,即使在同一个行业,数据也是‘一人一个模样’。”百度大数据部副总裁陶海亮说。
香港城市大学教授马建和中国信息协会大数据专委会副主任委员文金言认为,目前中国大数据产业距离“潮头”的差距还表现在大数据处理工具是“他山之石”,一些知名企业用的都是国外的数据处理技术,自主核心技术突破还有待时日。
清晰定位防其“野蛮生长”
确立大数据思维被认为是突破大数据发展障碍的重要抓手。有专家指出,当前一些地方政府缺乏“数据治理”意识,形成了做决策靠经验判断的惯性思维。一项针对我国主要部委信息化部门的调查显示,近4成的部门负责人没有意识到大数据可以帮助提升业务能力。
此次产业博览会上,一些与会者提出,政府应制定清晰的大数据、云计算顶层设计。从数据主权、数据创新能力、关键技术、人才、数据研究、覆盖全行业的产业链、法制环境支持等关键要素入手,研究大数据发展趋势,评估大数据对政府、经济与社会运行所带来的革命性影响
同时,制定未来5年或更长时间的发展目标、发展原则、关键技术、重点任务、行动计划和保障措施等规划,以协同政府各部门、各行业主管单位、企事业单位和个人等各方面的力量,形成共同发展的氛围。
邢志峰说,解决“信息孤岛”问题,最为迫切的是政务公开,“越多政务数据被公开,就会创造越多的机会和价值”。政府应加快推进数据的分级和公开,同时采用政府购买服务的方式,带动数据资源成为社会治理,优化城市管理和经济决策的重要资源。
国家信息中心专家委员会副主任宁家骏认为,各地数据中心的建设规模应以产业实际需求为导向,做到精细化设计,针对性开发,促进大数据产业形成良好、可持续的发展生态环境,而不是任其“野蛮生长”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09