
传统石油企业如何利用“大数据”挖金_数据分析师
“大数据”不是新生事物,百度、谷歌的搜索服务就是典型的“大数据”运用。面对信息时代的冲击,身为工业化时代规模经济代表的传统石油公司受到了时代变局的巨大压力。一方面,传统化石能源面临枯竭,而且开采成本持续上扬;另一方面,人们对环境质量要求日渐苛刻,新能源逐渐成为未来选择,而且其成本也在中国世界工厂的助推下继续下降。这两方面的压力迫使传统石油公司必须转型成为新型的创新型公司。
“大数据”的五大价值体现石油企业从事的勘探开发、炼化、销售、管道储运等业务属于数据密集型行业,历史上已经累积了海量的异构数据。“大数据”对石油企业的价值主要体现在以下几个方面:
1帮助石油企业提高勘探开发决策的效率和水平,实现新的油气增产。如“大数据”可以同时使用钻井和生产数据,将储层的变化情况实时提供给储层分析工程师,为生产人员提供举升方法改造方案。“大数据”也可以用来引导页岩气压裂。
2帮助石油企业发现消费者的消费趋势和潜在需求,进而促进业务创新和开发潜在市场。如在加油站营销过程中,通过完善数据收集分析和监测体系,可追踪每个客户的个性化需求,进而开展定制化服务与管理,并适时推出新的产品和服务,从而吸引和留住更多的客户,以扩大市场份额。
3“大数据”能够帮助石油企业实现对网络舆情、社会动态以及国际形势的监控分析,从而为正确实施“走出去”战略、降低海外投资风险提供保障。如在对外油气合作开发过程中,通过对重点资源国地缘政治、经济动态的分析和把握,能够建立良性互动的竞争合作关系,从而实现从挑战向机遇的转化。
4用“大数据”改进人才管理包括评估雇员敬业程度,识别人员技能缺陷,根据需要修订招聘做法;还可以利用“大数据”提升员工能力,确定投资培训和专业发展目标。
5油田公司利用“大数据”解决方案改善安全,减少作业对环境的影响。比如水力压裂,遭到指控的HSE案例涉及空气污染、饮用水污染以及地震影响。通过越来越先进的地下传感器收集和分析数据,钻井承包商可以更好地知道如何减少注入地层的压裂液用量。利用“大数据”进行HSE管理,不仅可以增进安全,减少对环境影响,还可以使作业更有效并节省作业开支。
中国石油企业的“应对法则”为有效利用“大数据”,中国石油企业需在技术、管理和人才等多方面做好应对。
1应与专业技术公司共同推进相关技术的研究和应用面对推陈出新、高速发展的众多技术,石油企业应积极跟踪、适时引入并试点实施,做好应对“大数据”的技术储备。
2应尽快建立相应的数据应用和信息化管理模式数据是企业的共同资产,只有实现数据充分共享,才能最大化发掘数据价值。因此,需打破传统的部门壁垒,建立涵盖企业全局的数据共享与服务合作机制,进而搭建跨地域、跨部门、跨专业的企业级“大数据”应用中心,形成更为科学的数据价值发掘和应用模式。
3要着力培养“大数据”专业人才由于“大数据”应用涉及多学科、跨领域的知识,既需要精技术、懂业务的复合型人才,也需要数学、统计学和经济学等其他专业人才,更需要大量从事数据分析的数据分析员、数据科学家。但是,目前此类人才缺口较大。未来6年,仅美国就需要14万到19万名拥有数据深度分析专长的从业者。因此,中国企业应未雨绸缪,做好应对“大数据”的人才储备。
4需重视数据资产保护从油田和销售渠道搜集的数据是宝贵资产,国内外的竞争者如果拿到便可从中获益。油气业的“大数据”先驱要建立严格的安全政策,阻止黑客入侵,把安全风险降到最低程度。对于物理资产(如传感器),要像数据资产一样保证它们的安全。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21