京公网安备 11010802034615号
经营许可证编号:京B2-20210330
世界迈进了大数据时代。互联网和智能手机产生的数据“大爆炸”催生了提取和解读海量数据的新工作岗位——“数据科学家”。《华尔街日报》日前报道称,3年前数据科学家这个职业头衔基本还不存在,如今已成为高科技劳动力市场上最热门的职位之一。
在很多企业,由于有巨量数据需要分析,数据分析员成为一个必须的职位,连一些看上去和数据毫不相关的企业,也需要数据分析员进行数据分析,帮助做出更好的决策。巨大的用人需求之下,数据科学家成了“香饽饽”,一场寻找或培训“数据科学家”的争夺战正在美国掀起。
美国商业分析软件与服务供应商SAS公司大中华区总裁吴辅世告诉本报记者,大数据需要大分析,大分析需要新技术,但企业还需要新人才。在大数据时代,数据科学家等分析人才的需求将激增,尽早开始人才储备将是企业稳步发展的优势之一。
数据科学家需要独特的综合技能,但是,目前这方面的人才如此稀缺,以至于他们被称作“独角兽”。《华尔街日报》说,理想的“数据科学家”不仅要拥有传统的市场调研技能,还需要有能力从不同来源的上百万数据碎片中找出规律,再通过这些规律来推断消费者行为,找准消费行为的触发点并写出相关的统计模型。例如,在某电子商务网站,一名生物统计学博士过去几年里通过挖掘医疗记录来研究乳腺癌的初期征兆,现在他为网站编写统计模型,推断人们在该网站上用什么词条来搜索自己在大街上看到的时尚新品。在一家移动支付初创公司,一位编写统计模型、研究人们政治信仰如何变化的认知心理学博士,现在专门研究人们的行为模式,从而判断哪些零售商更有可能遇到顾客要求退货。
以下数字可以说明数据人才有多稀缺。招聘者说,一个拥有博士学位的数据科学家的起薪通常是六位数,工作两年后,就可以轻松赚到20万至30万美元的年薪。在美国职业社交网站领英网(LinkedIn),有3.6万个数据科学家的职位虚位以待。另一家网站的数据显示,去年底有6000家公司正在招聘数据方面的人才。
看到市场对数据人才的追求日益激烈,很多大学开始专门开设数据分析类专业。据悉,过去一年里,至少有六所美国大学,包括弗吉尼亚大学、哥伦比亚大学、俄亥俄州立大学等开设或宣布计划开设数据科学方面的硕士研究生培养项目。例如,南加州大学马歇尔商学院就专门开设了商业数据分析的硕士项目。该项目介绍的第一句话就是:商业数据分析是现在全美增长最迅速的领域。
分析人士称,大数据革命将深刻影响人们的工作、生活和思维。“数据,已经渗透到当今每一个行业和业务职能领域,”全球知名咨询公司麦肯锡指出,大数据是“创新、竞争和生产率的新边疆”,具有变革性影响,是数字时代的生产要素,是获取竞争优势的一个源泉。毫无疑问,大数据的重要价值正日益凸显,数据分析将成为21世纪的一个“金饭碗”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27