
运用大数据提高党建工作科学化水平
新世纪新阶段,党建工作内外环境发生了巨大变化,提高党的建设科学化水平面对许多新挑战、新课题。应对新挑战、解答新课题,党的建设工作必须更新理念、更新手段。当前,随着信息技术迅猛发展,大数据时代已经到来。加强党的建设,应树立大数据理念、运用大数据技术,使党建工作更加体现时代性、把握规律性、富于创造性,不断提高科学化水平。
所谓大数据技术,是指从复杂多样的海量信息中快速获得有价值信息的技术和能力,它能为经济社会发展提供智力支持,将对决策模式和经济社会运行模式产生深远影响。大数据代表了一种观照复杂事物的思维方式,其特点表现为忽略数据的杂乱性,强调数据的量;忽略数据的精准性,强调数据的代表性;忽略因果关系的探求,重视整体规律的总结。用大数据专家舍恩伯格的话说就是,“不是随机样品,而是全体数据”“不是精确性,而是混杂性”“不是因果关系,而是相关关系”。把大数据理念、大数据技术运用到党的建设工作中,有助于解决许多复杂问题。
运用大数据技术可以提高党在复杂形势下的全局掌控能力,保持党的先进性。我们党是各项事业的领导核心,各级党组织在经济社会发展中具有引领作用,这是党的先进性的重要体现。为此,必须提高党在复杂形势下的全局掌控能力。过去,由于受技术和信息来源的限制,人们只能通过抽样的方法观察决策对象,因而难以把握数据之间的整体联系。大数据将数学算法运用于海量数据,通过“让数据自己说话”的方式,让决策者超越局部事实和经验判断而作出正确的形势评估,使事物发展的趋势一目了然。在当今纷繁复杂的国内外形势下,科技发展、社会动态、市场变化和国家安全等领域蕴藏着海量数据。掌握以预测为核心的大数据技术,可以揭示数据之中隐藏的规律性东西和未来发展趋势,为党组织决策提供宝贵参考。可以说,有效运用大数据技术,可以显著提高党在复杂形势下的全局掌控能力,不断提高党组织的引领能力,保持党的先进性。
运用大数据技术可以了解党群干群关系发展趋势,有针对性地加强党的作风建设。大数据改变了决策者长期以来依靠经验、习惯进行决策的方式,使直觉判断让位于精准的数据分析。过去“知识就是力量”的响亮口号在大数据时代已经演变成“全知就是全能”。只有掌握足够数据,才能及时精准地了解民情民意,了解党群干群关系发展趋势,从而有针对性地采取措施,加强党的作风建设。通过大数据技术的数据抓取,既可以了解当前情况,又可以追踪较长时间段内党群干群关系的信息动态,为党的思想建设和组织建设提供依据。大数据的分析和预测将使党服务群众更加精准、更加科学,公共管理能力也能得到显著提升。大数据的分析结果对于预测群众的思想动态也有很大帮助,甚至可以开启党服务群众的个性化时代。这对于党在新时期凝聚人心具有不可估量的意义。
运用大数据技术可以对基层党员、流动党员实施有效管理。随着党的事业的发展,党员队伍不断发展壮大,党员队伍结构日趋复杂。特别是随着非公有制经济和新社会组织的快速发展,基层党组织与党员的分散性和自主性明显增强,产生了大量流动党员。在人人追求个性化发展的今天,对基层党员、流动党员实施有效管理,需要采取更为精细化和个性化的管理模式。作为对这种管理诉求的一种技术回应,大数据技术可以使党务管理和服务直接针对党员的个性化需求。大数据技术具有强大的区域、行业和部门渗透力,能够充分利用信息化手段,组建全新的党建数据平台,为存储数据、分析问题和进行党务决策提供支持。这对于加强基层党员和流动党员管理、提高基层党组织的战斗力具有深远意义。
运用大数据技术可以科学评估党建制度的运行状况,完善党建制度体系。提高党建科学化水平,需要改进和完善党建制度体系。进行党建制度改革,必须科学评估现有制度体系的运行状况,找出影响制度运行的因子。过去,由于受技术条件限制,只能把少数衡量因子纳入评估体系,通过抽样调查的方式找出影响制度运行的问题。大数据技术能够改变党建制度评估体系。各级组织部门可以将基层调研得到的数据同日常谈话记录、部门工作总结、网上相关评论等信息通过技术手段综合在一起,整合为一个庞大的数据库,从而通过全量数据进行全面分析,对党建制度体系运行状况得出有说服力的评估结果,为完善党建制度体系提供决策参考。
运用大数据技术可以较快发现腐败问题,提高反腐败斗争实效。腐败问题是党的建设面临的一个重大问题。这个问题解决不好,就会对党造成致命伤害。当前,腐败分子违法违纪的手段越来越隐蔽,运用传统方法有时比较难以发现。同时,经济全球化深入发展还为一些腐败行为跨国运作提供了条件,一些腐败分子为了逃避法律制裁,经常把巨额赃款转移到国外。为了切实打击腐败分子,可以通过建立党务数据、金融数据、司法数据、公安数据等系统整合的大数据系统,对大额资金外流和党员行为异常情况等进行有效监控,使违法犯罪行为在大数据环境下原形毕露、无处逃遁。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27