京公网安备 11010802034615号
经营许可证编号:京B2-20210330
用大数据预测地震_数据分析师
在此哀悼:4月25日,尼泊尔发生8.1级强震中遇难人员、逝者已矣,生者如斯!
地震属于天灾,这种极具破坏力的灾害一直困扰着地球。人类一直在寻找着地震预警的方法,试图将伤害降到最小。理论研究表明,如果预警时间为3秒,可使人员伤亡减少14%;如果为10秒,人员伤亡减少39%;如果为20秒,人员伤亡减少63%。
那么大数据能否预测地震??
小编介绍下我国地震预警系统
我国拥有世界最大的地震预警系统
在雅安地震中,几乎与芦山地震发生同时,成都高新减灾研究所已经在计算机网络、手机客户端、专用预警接收服务器、电视台、微博等平台上都同步发出了地震预警。成都高新减灾研究所最先预测到雅安地震的发生。
大数据能否让地震预警更加快速有效
说地震预测预报是最重要的世界难题,这绝不为过。重要是因为它的发生会涉及大面积的人生命安全与财产安全,困难是因为其覆盖的科学领域太多,太繁杂。3.11日本大地震纪念日刚过,还有媒体在炒作两年前的惨景。可喜的消息是,我国首次成功预警一次2月19日的云南巧家10时46分59秒5.0级地震。那么,我们是否可以通过信息化或者大数据技术来解决地震预测和预警这个世界难题呢?
用数据监控形成预警网
由于我国也是地震多发区,上个世纪发生过多次大地震,建国后在周总理的亲自指导下,由著名地质学家李四光带队,从板块学说入手,建立了一支群测群防的地震预报队。具体方法是这样的,在板块比较活跃的地带,先形成多个观测网点,然后层层落实到人,进行基础参数的观测。这其中的参数包括地磁、地电、磁偏角、地面温度,以及地下水水温,水位和水中气体氡的含量。观测点每天将自己的数据观测出来后记录下来,汇成表格,作为备案,如果有异常,就要向上一级区县级地震小组汇报反映。由于基层观测点的设备比较基础简陋,数据是否准确,县级以上会做出判断甄别,去除干扰信号。然后区再向市级与省级汇报,最后汇报到国家地震局。
可见,这其实是一个很大的地震预警网,如果观测点很多,产生的数据量也会很大,光光凭简单的人工手绘制趋势图比较原始,而且如果地震很快发生,可能这种工作只能起到记录作用,而失去了预警作用。但是,就是这样的原始预警系统,在上个世纪七十年代还准确预测出了辽宁海城地震,让世界地震预报界感到震惊。而日本3.11大地震震前的提前2分钟全国发布,更让世界人们知道,我们可以通过监测地震源发生地震后,马上通过无线电系统对外发送应急广播,通过电视,手机短信等多手段通知受灾区域,这样会给大家赢得时间,转移贵重财产和人员安全。
中国的地震预警系统,也是基于这个原理。据成都高新减灾研究所所长王暾介绍,他们所开发的地震预警系统原理是这样的:“地震波分为纵波和横波,纵波的速度很快、垂直传播,横波横向传播,但它的速度只有每秒3.5公里左右。我们的接收装置接收地震的纵波信号后,就用无线电(速度=光速)快速传播到预警系统,并就此向地震波尚未到达的地方进行预警。
中国地震局工作人员也表示,中国地震局“国家地震烈度速报与预警工程”目前已经进入发改委立项程序,计划投入20亿元,用5年时间建设覆盖全国的由5000多个台站组成的国家地震烈度速报与预警系统。目前该工程正在福建省试点。
大数据技术保护我们的生命与财产安全
推而广之,其实地震火山等等都可以利用这种原理进行试试监测。只是观测点越多,需要存储和处理的数据就越多,美国在黄石火山安放了几百个观测仪器,数据实时传到他们的预警系统,然后通过互联网对外发布。所以,一旦黄石火山出现问题,美国政府会率先知道。观测数据分为两部分,一部分是常规数据,另一部分是异常突发数据。一个地区的异常突发数据越多,产生地震的可能性就越大。所以预警系统主要是对这些数据进行快速反应。
这里说到大数据除了海量数据存储与加工处理,还有一个问题,就是数据的多样性,地震问题就更加明显。我们刚刚列举的是大地震前的自然地理特征参数指标,其实动物异常也是一个很重要的指标。比如唐山大地震前,不光是地下水位上涨,水温提高,就是老鼠蛇以及猫青蛙都有异常反应。这些其实一般人如果留意都可以发现。可以想见,一个那么大的地震,生物不可能没有任何征兆。我们进行地震预报预测人的目的,就是通过各种手段,找到这些蛛丝马迹,然后快速确认,把消息传达给广大人民群众,使得灾害损失达到最小。
现在地震预报出现了很多所谓的民间科学家,他们也经常根据动物或者地磁的变化来判断地震,当然这里的误差也比较大,但是这毕竟是一种尝试,我觉得在人的生命面前,这样的尝试应该是被容许的。所以,我希望现在那些地方小的地震预测网站可以通过多数人的手机图片拍摄或者短信消息上传来汇集震前动物异常,至少这可以为专业地震局提供最真实资料,这其实也是大数据收集的一种,这样的行为应该是合法的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12