京公网安备 11010802034615号
经营许可证编号:京B2-20210330
汽车大数据时代来临 将推动产业全产业链变革
传统的汽车行业数据来源不畅、结构单一、应用较浅,无法满足企业的数据需求。而互联网、移动互联技术的快速普及,正在诸多方面改变着人们的车辆购置和使用习惯,使传统的汽车数据收集、分析和利用方式发生重大转变,必将推动汽车产业全产业链的变革,为企业带来新的利润增长点和竞争优势。
以上是在中国汽车技术研究中心、中国汽车流通协会等单位共同举办的“2015中国汽车产业数据研究峰会”上,参会代表们达成的共识。会议围绕如何利用网络化、数字化推动我国汽车产业发展这一主题,进行了广泛而深入的讨论。
逐步覆盖全链条
据与会专家介绍,目前在数据收集方面,车企、经销商、互联网及消费者等多渠道的数据收集方式日趋完善,使汽车大数据逐步覆盖全链条。车企大数据包括客户信息、交易信息、车辆信息、生产信息、采购信息、维修信息、投诉信息等,随着企业信息管理水平的提高以及新的数据采集技术的使用,这些数据都将逐步得到完善。
随着数据的收集应用,汽车经销商通过移动互联、后台音频整理、证照识别录入等新技术的使用,实现从消费者“关注”到“消费”整个过程核心行为要素的实时监测,确保消费者入店行为数据的全录入,同时监测车辆4s店维修保养信息。通过统计微博、峰会、网页等互联网大数据,企业可以监控客户进入首页,查看车辆详情及停留时间,洞察客户对车辆的关注点和走势,掌握不同客户的潜在需求及预期,监控产品舆情反馈等等。在消费者方面,车联网将对客户使用车辆的信息进行监测,包括车主行为数据、车况数据、位置数据、驾驶数据等。
在数据分析方面,需要将多渠道、标准不一的客户数据进行整合,建立汽车大数据库。
据专家介绍,建立汽车大数据库主要分6步:数据融合、用户识别、全网用户识别、用户标签、用户聚类、用户细分。数据融合是把分散在不同系统之间的数据整合在一起,包括生产数据、销售数据、售后数据、互联网数据等。用户识别是通过数据清洗,识别出每个客户的详细信息。全网用户识别是采集客户的网上行为数据,进行全网客户识别,产生360度全方位客户视图。用户标签是将每个客户的特点、爱好、生活习惯,进行细致区分,并以标签化进行用户定义。用户聚类是指根据客户的标签进行分组。用户细分是对客户完成精准细分,针对目标客户开展一对一精准营销。通过这6步即建成统一、整合、可直接使用的数据库。
数据应用全方位
在数据利用方面,汽车行业对互联网、大数据等新兴科技的利用涉及到产业链的各个环节,包括:用户洞察、开展精准营销、改善客户管理及服务、改善产品研发和提升产品质量、业务运营监控、汽车后市场、交通领域、汽车流通等方面。通过对多渠道的汽车大数据进行融合及挖掘,能够深刻地了解客户需求及动向、掌握客户信息、进行市场细分、竞争分析、掌握客户满意度等。大数据还可用于开展精准营销,通过整合汽车媒体、微信、官网等互联网渠道潜客数据,扩大线索入口,提高非店面的新增潜客线索量,并挖掘保有客户的增购、换购、荐购线索,从新客户和保有客户两个维度扩大线索池;运用大数据原理,定义线索级别并进行购车意向分析,优化潜客培育,提高销售线索的转化率,提升销量。
大数据应用于客户管理方面,可以提升客户满意度,改善售后服务。通过建立基于大数据的CRM系统,了解客户需求,掌握客户动态,为客户提供个性化服务,促进客户回厂维修及保养,提高配件销量,增加售后产值,提升保有客户的利润贡献度。
大数据可以改善产品质量,促进产品研发。通过用户洞察,进行产品设计改进及产品性能改进,提高产品可靠性,降低产品故障率。
大数据应用在企业运营方面可通过搭建业务运营的关键数据体系,开发可视化的数据产品,监控关键数据的异动,快速发现问题并定位数据异动的原因,辅助运营决策。
助推汽车行业发展
另据专家介绍,目前汽车行业对大数据的收集、分析和利用仍处于探索阶段,因此,此次中国汽车产业数据研究峰会的召开正当其时。与会代表纷纷表示,峰会的成功召开,给业内企业提供了汽车行业利用互联网、大数据转型升级的经验交流平台,使业内企业能全面了解汽车行业各个环节利用互联网、大数据等新技术的最新进展,有利于各种新理念和新技术的快速应用,大大加快了汽车行业互联网化、数字化的进程,对于推动汽车行业的发展有着十分积极的意义。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09