京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代贵州走在最前端_数据分析
无论从对大数据的理解和认识角度来看,还是从大数据产业发展的速度来看,刘英杰认为贵州大数据已经走到全国的最前面,“云上贵州”大赛成为中国大数据产业第一赛,则从另一侧面充分地说明了他的判断很准确。中软国际非常看好贵州的大数据的未来,因此在去年,也就是贵州大数据元年,中软国际便参与创建了云上贵州大数据产业发展有限公司,作为国内最顶尖的软件与信息服务公司之一,他们不想错过与贵州共同发展的机会。
基础条件差 坚定贵州走大数据之路的决心
“作为大赛的评委,是我的第七次贵州之旅。”刘英杰说,几乎每次来贵州,都和大数据发展有关。在他的眼里,贵州早已不是那个落后封闭的地域,而是创新发展指引大数据新时代的领军者。
刘英杰认为在大数据时代来临之际,从全国的范围来看贵州醒得最早,贵州省委、省政府以及企业对大数据的认识和理解,是全国最领先的。
“如果没有最领先,我想马云也不会极其看好贵州大数据产业未来的发展,阿里云的主要发展基地没有选择杭州、上海、北京,而是建在贵州,就充分说明了这点。”刘英杰说。
贵州为什么会取得全国领先的优势,为什么贵州在这个全新的时代觉醒得最早?在刘英杰看来,这是历史倒逼的作用。经济落后,交通不甚便捷等等诸多限制贵州发展的历史因素,反向推着贵州的决策层要去思考贵州究竟走一条怎样的道路,才能摆脱贫穷落后的面貌。
大数据时代的来临,为贵州突破找到一条可行之路,大数据的利用和分析,已经摆脱传统行业对资源以及地域条件的苛刻要求,只要有网络覆盖的区域,就有发展大数据项目的可能,贵州省的决策者们敏锐地察觉到这稍纵即逝的契机,在全国率先迈出了第一步,两贵大数据产业发展示范集聚区的获批,更进一步的确立了贵州在大数据产业发展方面的全国优势。
发展大数据 贵州不能起步早跑得慢
“从觉醒的角度来说,贵州是不折不扣的第一,但是,按照贵州省长陈敏尔的要求,贵州不仅要起步早,还要跑得快,尽快把大赛项目落实,并发展壮大是贵州现在必须要做的事。”刘英杰坦言。
要想跑得快,政府的决心最为重要。因为在当前的中国,政府所拥有的数据数量最为庞大,也最有价值,怎么去更大化的开放数据,以供给企业、市民等等使用,通过数据产生新的商业模式,解决现有产业中的痛点,逐步转化为价值用以促进经济社会发展,是起得早中最关键的环节。
“我欣喜地看到,贵州省、贵阳市在这方面也做得很好,率先开放脱敏数据,贵州确实做得很棒。”刘英杰说。
另外,刘英杰认为贵州建立的大数据产业发展办公室,从组织和领导层面上解决了政策聚合,资金引入等等诸多环节的问题,起到了消除政策、部门壁垒的作用,非常有效的助推了贵州的发展。
“在贵州省大数据办的聚合下,依托阿里云飞天平台,中软国际参与投资并承建了云上贵州平台,在平台的基础上,贵州7+N朵云不断入驻,贵州大数据产业发展向更深入、更宽广的数据蓝海航行。”刘英杰说,中软国际十分看好贵州大数据的未来,并参与投资建立了云上贵州大数据产业发展有限公司。
大数据项目 价值决定未来的发展
“您最看重大数据项目中哪个层面?最能赚钱?最有想法?最具发展前景?”记者向刘英杰抛出问题。
“价值。”刘英杰没有任何犹豫的回答,在他看来“价值”,就是大数据项目如何来解决现有政府管理、社会、行业、企业的痛点所带来的价值。比方说,通过大数据分析运用提高政府管理效能,解决城市交通拥堵问题,打击网络假货等等所产生的价值。
“在大赛众多参赛项目,我比较欣赏的一个想法是药品冷冻链云,如果这事能做成,将对我们国家药品管理工作起到巨大的推动作用,是解决痛点的具体体现,会让老百姓用药变得更安全,更方便。当然固然想法很好,也不代表着能够成功,这个团队本身如何决定大数据项目的成败。”刘英杰说。
最后,刘英杰表示,其实有的时候,发展大数据产业,我们也不用过分纠结于项目本身是否在贵州落地,毕竟大数据时代的特征是跨地域、跨平台,就算公司建立在美国的西雅图,但是他们服务于贵州,也是大数据产业在贵州发展很好的另一种体现。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23