京公网安备 11010802034615号
经营许可证编号:京B2-20210330
个性化是商业的未来
现代社会是一个商业社会,工业化解决了批量生产商品的问题,促进商业蓬勃发展。随着社会的不断发展,商品也越来越多样化,以期满足大众的不同需求。以电视机为例,最初只有尺寸的区别,后来可以选择品牌型号。直到11年9月27日,海尔和天猫在网上发起用户定制电视的活动;用户可以在电视机生产以前就选择电视尺寸、边框、清晰度、能耗、颜色、接口等属性,再由厂商组织生产并送货到客户家中。这样的个性化服务受到广泛欢迎,2天内1万台订制电视的额度被抢光。类似的定制服务在空调、服装等等商品上都受到用户欢迎。这些事例已经展示了未来商业的曙光通过满足个性化需求来使用户得到更满意的产品,进而缩短设计、生产、运输、销售的周期来提升商业运转的效率。
大数据是实现个性化的基础
要实现个性化的商业模式,充足的数据是基础。比基尼生产厂商都知道他们的产品在海滩边或滨海城市有市场。可有谁能料到新疆和内蒙古的男人最爱给自己女人买比基尼呢?这样的潜规则隐藏在数据中,需要深挖才能见天日,就像啤酒和尿布的经典故事那样。而大数据相对于传统的数据挖掘更进一步。数据量大、数据种类多、数据之间有潜在关联是挖掘大数据的前提。整个互联网的用户和所有的商品本身就是一个足够大的数据空间,加上空间、时间、天气等等潜在相关因素,想要知道每个用户的喜好,所需要的数据量是巨大的。数据越多对用户的理解越精准。
互联网大数据处理的技术挑战
处理互联网大数据充满挑战,首当其冲的就是处理大数据的能力。为使消费数据的速度赶超生成数据的速度,拥有足够的计算资源是必要条件。在此基础上,线性扩展的计算框架、高效稳定的程序设计以及精准的算法都是大数据处理的核心能力。
第二个挑战便是时效性。用户在互联网上的操作不断地暗示其意图,只有及时感知到这些意图,才能在用户下一次操作前做出有效的响应,最终给用户带来便捷。这样的时效性要求系统的计算框架能够以数据流的方式来运转。最终导致系统在如何实时分流负载、实时容错等问题上采用与传统批量大数据处理截然不同的技术方案。
为了更大程度的满足个性化需求,还必须具有足够强大的定制能力。一方面,尽管单个用户的定制需求可能很小,但用户数量巨大,定制需求迥异,不是几个工程师努力下就能完全解决问题的。需要有像数据库SQL语言那样给用户足够多的自由,使再小的需求通过简单的操作就能满足。这样的定制能力要在数据的存储、运算、查询、展现等多方面都有体现。
阿里云的解决之道云推荐
不论是收集大数据的计算和存储能力,还是处理个性化问题所需要的实时计算和算法技术;对于网站站长和开发者而言都是不容易快速得到解决的问题。阿里云正试图通过云端服务来降低个性化服务的门槛,使更多网站站长和开发者能够低成本享有自己的个性化服务。
如果某网站是介绍美食菜谱的,用户在浏览茶树菇鸡汤的时候,如果能够有些相关菜谱推荐,那么便可以让用户在网站内停留更多时间,访问更多内容。事实上,有多种推荐算法可以找到用户感兴趣的内容:
l 从用户访问日志里面也许发现用户访问好这个菜谱以后五成用户都会去看看补血益气乌鸡汤、这种现象一定有其背后的理由,也许会成为一个不错的推荐。
l 既然用户在看鸡汤类别的菜谱,那就可以把网站里面其他热门的鸡汤菜谱推荐出来,如香菇鸡汤。
l 通过分析某一个用户过去历史的访问记录,或许能发现该用户相对于其他用户更偏向于文火慢炖的汤,那就应该适当推荐出类似炖鸡汤这样的菜谱。
l 相对于鸡汤而言,羊肉汤也是汤类别的热门品种,用户也许会吃鸡汤吃腻了想换换口味。
然而,要实现这样的推荐,传统的做法需要大量人工编辑工作。既不能做到即时,也很难保证效果。人工编辑更难验证这些推荐算法是否能在真实流量上产生足够好的效果。一个精准的推荐模型,必须对算法本身的整体效果以及用户对各种算法推荐结果的偏好作一个综合评估,这样才能找到合适每一个用户的精准推荐模型。最终让用户享受到推荐展位千人千面的个性化服务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09