京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据在互联网时代是敌是友_数据分析师培训
在互联网时代,数据是企业分析市场与选择企业战略的基础。由于互联网技术的发展,信息容量以几何级的速度增长,而各种相关收集数据的工具和各大网站自身在提供网络服务时顺带收集数据的技术也更加完善。使得各大企业收集数据更有时效性和快速性,然而网络是把双刃剑,在互联网时代,大数据是敌是友?
数据是研究的“生命之血”,现在对商业和工业来说,也同等重要。传感器网络等技术能够让我们以惊人的速度收集海量数据,这种数据的收集通常以非常复杂的方式进行。
从大数据集中提取信息的过程通常被称之为“数据挖掘”,整个过程就像从废料中搜寻宝贵的矿石。这种数据挖掘和分析能够让公司获得巨大优势,帮助他们更好地满足消费者的需求。
例如,百度在提供搜索服务的同时也在收集用户的信息,针对单个用户每天搜索的信息量即时推送相关搜索信息,实现精准化营销。但另一方面我们可以想象,我们每天获取的是相类似的信息,用户体验的提升方面一般比较差,面对海量信息陷入了一种搜索疲劳的状态。
然而信息的追求是滞后的且是相对真实的,它会受到客观技术条件和用户主观想象的偏差,所以,所有测量都存在不确定性或者实验误差。数据收集是一项昂贵的业务,所研发的相关工具允许实验人员以一种能够有效收集数据并在考虑不确定性情况下对数据进行分析的方式设计他们的实验。大数据世界发生的变化带来了研究和工业应用方面一系列新的可能性。直到最近,质量检验员在监视一条非纺织织物的生产线时还不得不停止生产,剪下一点检验抗张强度和孔隙率等性能。现在,质量检验员可以借助摄像头拍摄连续视频,而后利用相关算法对视频数据进行分析,检验这些参数。与少量数据相比,采用大数据技术对织物品质进行评估无疑拥有更大优势,在更大程度上确保产品质量。
大数据分析就是要钻进消费者的脑袋,了解他们的想法,以更好地满足他们的需要。
亚马逊和谷歌等信息服务提供商依靠先进的算法对大数据进行分析,例如根据消费者过去的购买行为准确预测图书、DVD等产品的销售前景。有效利用大数据的公司能够从中受益,做出正确的重要商业决策。也就是说,不拥抱大数据革命的公司可能品尝苦果。
大数据革命的受益者不仅仅是大公司。借助于获取和分析海量数据的能力,医疗卫生、环境保护、交通管理和很多科学研究领域都能成为受益者。医疗领域出现一门名为“生物信息学”的新学科。生物信息学技术允许研究人员在越发清晰的人类基因组图谱中搜寻,确定与特定基因构成和疾病有关的形态。在所谓的生物标记中锁定有害形态有助于医生更早预测疾病的产生,进而更早地采取对策,防止疾病形成。从这个意义上说,大数据技术能够扮演生命拯救者的角色。
不过,分析和利用大数据也存在自身问题。大数据分析需要采用严格的统计学方式,但分析技术的进步速度并没有跟上“数据海啸”的增长速度。对大数据的分析可能产生徒有其表的结果,例如亚马逊通过大数据分析认为你可能对一本书感兴趣,而实际情况却是,你对这本书没有丝毫兴趣。
如果仅限于此,问题也不是特别严重,但是,当类似这样具有欺骗性的联系导致不恰当的医疗诊断或信贷限制,或者一种算法错误地将你的电话或者网上活动与恐怖主义联系在一起,那就真的是个问题了。
对于大数据的使用,发起者应负起责任,解释收集数据的目的、过程以及用途。对于大数据的收集、存储、检索和分析,仍有很多东西有待我们去了解和学习。尽管用于数据挖掘的“机器学习”算法不断取得进步,但我们尚不十分清楚如何应对大数据的不确定性。也就是说,我们需要一种新的统计学方法,用于大数据的分析。没有新的统计学方法,我们便永远无法十分肯定我们可以相信并控制结果。
在这个信息爆炸的时代,数据已经不再是稀缺资源,我们在保证技术提升的同时也应该分析并甄别其中有用的信息作为企业决策的依据。正确的利用各种统计方法和互联网工具,最终达到提升用户体验的满意度的目的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13