京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理,大数据将为我们的生活创造前所未有的可量化的维度。 举个例子: 2009年出现了一种新的流感病毒。这种甲型H1N1 流感结合了导致禽流 感和猪流感的病毒的特点,在短短几周之内迅速传播开来。全球的公共卫生 机构都担心一场致命的流行病即将来袭。有的评论家甚至警告说,可能会爆 发大规模流感,类似于1918 年在西班牙爆发的、影响了5 亿人口并夺走了数 千万人性命的大规模流感。更糟糕的是,我们还没有研发出对抗这种新型流 感病毒的疫苗。公共卫生专家能做的只是减慢它传播的速度。但要做到这一 点,他们必须先知道这种流感出现在哪里。美国,和所有其他国家一样,都要求医生在发现新型流感病例时告知疾 病控制与预防中心(CDC)。但由于人们可能患病多日实在受不了了才会去医院,同时这个信息传达回疾控中心也需要时间,因此,通告新流感病例时 往往会有一两周的延迟。而且,疾控中心每周只进行一次数据汇总。然而, 对于一种飞速传播的疾病,信息滞后两周的后果将是致命的。这种滞后导致公共卫生机构在疫情爆发的关键时期反而无所适从。在甲型H1N1 流感爆发的几周前,互联网巨头谷歌公司的工程师们在《自然》杂志上发表了一篇引人注目的论文。它令公共卫生官员们和计算机科学 家们感到震惊。文中解释了谷歌为什么能够预测冬季流感的传播:不仅是全 美范围的传播,而且可以具体到特定的地区和州。谷歌通过观察人们在网上 的搜索记录来完成这个预测,而这种方法以前一直是被忽略的。谷歌保存了 多年来所有的搜索记录,而且每天都会收到来自全球超过30亿条的搜索指令, 如此庞大的数据资源足以支撑和帮助它完成这项工作。发现能够通过人们在网上检索的词条辨别出其是否感染了流感后,谷歌公司把5000万条美国人最频繁检索的词条和美国疾控中心在2003 年至2008年间季节性流感传播时期的数据进行了比较。其他公司也曾试图确定这些相 关的词条,但是他们缺乏像谷歌公司一样庞大的数据资源、处理能力和统计技术。虽然谷歌公司的员工猜测,特定的检索词条是为了在网络上得到关于流 感的信息,如“哪些是治疗咳嗽和发热的药物”,但是找出这些词条并不是重点,他们也不知道哪些词条更重要,更关键的是,他们建立的系统并不依赖 于这样的语义理解。他们设立的这个系统唯一关注的就是特定检索词条的频 繁使用与流感在时间和空间上的传播之间的联系。谷歌公司为了测试这些检 索词条,总共处理了4.5亿个不同的数字模型。在将得出的预测与2007 年、2008 年美国疾控中心记录的实际流感病例进行对比后,谷歌公司发现,他们的软件发现了45条检索词条的组合,一旦将它们用于一个数学模型,他们的 预测与官方数据的相关性高达97%。和疾控中心一样,他们也能判断出流感 是从哪里传播出来的,而且他们的判断非常及时,不会像疾控中心一样要在流感爆发一两周之后才可以做到。所以,2009 年甲型H1N1流感爆发的时候,与习惯性滞后的官方数据相比,谷歌成为了一个更有效、更及时的指示标。公共卫生机构的官员获得了非常有价值的数据信息。惊人的是,谷歌公司的方法甚至不需要分发口腔试 纸和联系医生——它是建立在大数据的基础之上的。这是当今社会所独有的一种新型能力:以一种前所未有的方式,通过对海量数据进行分析,获得有巨大价值的产品和服务,或深刻的洞见。基于这样的技术理念和数据储备,下一次流感来袭的时候,世界将会拥有一种更好的预测工具,以预防流感的传播。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09