
1号店董事长于刚:大数据时代的电子商务
英特尔公司的创始人之一戈登•摩尔在1965年发现了一个惊人的趋势,即集成电路芯片上所集成的电路的数目每隔18个月就翻一番,该发现被业界誉为摩尔定律。后来也有被描述为微处理器的性能每隔18个月提高一倍,或价格下降一半;或用同等价钱能买到的电脑性能(速度和储存量)每隔18个月翻一番,等等。
40多年在人类沧海桑田的历史上仅仅是弹指一挥间,摩尔定律却见证了电脑的数据处理和储存能力从K(Kilobyte)到M(Megabyte)到G(Gigabyte)到T(Terabyte)的变迁。尤其是互联网的出现,让我们急速地跨入了大数据(Big Data)时代。其主要的驱动力有以下几点:
1、随着社会经济的发展和个人收入的增加,人们的个性化需求开始凸显。而企业要去高效地满足这些个性化的需求则需要大量的数据支持。
2、互联网的出现和相关技术的发展让海量数据的收集和分析成为可能。互联网的特征又导致这些数据能够被高速度和大容量的传播。
3、互联网引入了由用户产生数据的模式。这种模式的特征是多源头,低成本,更及时。当然,这些数据的真实性和可靠性需要被核证。
4、构建在互联网基础上的电子商务和传统零售比较的优势之一就是数据的可获得性。电子商务可以实时得到顾客的来访源头,在网站内的搜索、收藏、购买行为,以及购买的商品间的关联性。这些数据可以帮助企业更精准的为顾客服务。
5、人工智能、信息系统和决策科学的发展促进了多种分析方法及工具的推动,包括数据挖掘,顾客行为模型,决策支持,等等。
数据(Data)是原始和零散的,经过过滤和组织后成为信息(Information),将相关联的信息整合和有效的呈现则成为知识(Knowledge),对知识的深层领悟而升华到理解事物的本质并可以举一反三则为智慧(Wisdom)。所以数据是源头,是决策和价值创造的基石。
数据的应用大致分以下几个步骤:a.数据采集、核实与过滤;b.在数据仓库内的分类和储存;c.数据挖掘以找到数据所隐含的规律和数据间的关联;d.数据模型建立和参数调整;e.基于数据的应用开发和决策支持。下面用实例来说明。
1、美国医药网站WebMD根据怀孕的女性用户填写的受孕信息定期给用户寄EDM,提醒母亲在该时间点的注意事项,需要摄入的营养,产前的生理变化和要做好的思想准备,产后的恢复,宝宝的育养和健康,等等。
2、1号店利用对大数据的分析给顾客发送个性化EDM。若顾客曾经在1号店网站上查看过一个商品而没有购买,则有几种可能:a.缺货,b.价格不合适,c.不是想要的品牌或不是想要的商品,d.只是看看。 若在顾客查看时该商品缺货则到货时立即通知顾客;若当时有货而顾客没有买就很有可能是因为价格引起的,则在该商品降价促销时通知顾客;同时,在引入和该商品相类似或相关联的商品时温馨告知顾客。另外,通过挖掘顾客的周期性购买习惯,在临近顾客的购买周期时适时的提醒顾客。
3、淘宝在2012年推出了淘宝时光机。 该应用通过分析顾客自注册为用户以来的行为,用幽默生动的语言告知顾客淘宝的成长,和该用户相类似喜好的其他用户的统计行为,对该顾客经过分析后对其喜好的了解和对其行为的预测,等等。用生动的文稿和个性化的数据、拉近了和顾客的距离。
4、Google的Adsense对顾客的搜索过程和其对各网站的关注度进行数据挖掘。 并在其联盟内的网站追踪顾客的去向,在联盟网站上推出和顾客潜在兴趣相匹配的广告,精准化营销,提高转化率。
5、Amazon近几年推出了FDFC(Forward Deployed Fulfillment Center)的概念,以加快对顾客配送的速度。Amazon的订单履行中心分两个层级:FC和FDFC,其中FC品种更齐全,而FDFC在物理位置上更靠近目标市场,但品种重点容纳针对目标市场的热销商品,顾客的大部分需求可以通过FDFC来满足,不能满足的长尾商品则由FC来满足。这样顾客急需的商品多数可以通过FDFC以更快捷和低成本的物流来完成。由于热销商品是随着时间和季节而改变的,故将什么商品储存在FDFC的决策是动态调整的,而此决策的依据就是对顾客需求的分析和预测。
各种应用的例子难以穷举,但趋势十分清楚:大数据的应用价值和潜力不再被人低估。但并不是所有企业都能在大数据这个金矿里真正挖到金子的。只有那些有远见有视野,重视系统,舍得投入,吸引了优秀的分析和系统人才的企业才会有所斩获。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14