京公网安备 11010802034615号
经营许可证编号:京B2-20210330
解读《大数据时代》:大数据时代的神话
地球人都知道我们处在大数据时代,或许地球人也都知道关于大数据时代最著名的一本书就是迈尔-舍恩伯格所著的《大数据时代》。
我本以为大数据这么高深的学问绝不是我们这样的屌丝能够理解或者使用的,所以一直对此书敬而远之,不敢阅读。不料周边谈论大数据的人越来越多,谈论《大数据时代》这本书的人也越来越多,似乎不读《大数据时代》,估计连屌丝都做不成了。所以斗胆请来《大数据时代》。一读,果然不懂,许多疑问。
何为大数据?
这是一个很令人困惑并且绝对屌丝的问题,平时都不好意思开口问别人,希望从书中得到答案。遗憾的是,迈尔大叔在书中就根本没有告诉我们什么是大数据,这对像我这样习惯在课堂里死记硬背的学生来说,就产生了轻微的智障:怎么似乎什么都是大数据。可要我记住哪一个却十分困难。
看完此书,我只能回答说大数据就是数据多数据大。可是这个回答似乎有明显的问题。迈尔大叔在书中就举了一个大数据的例子,这个大数据只有“4000”和“两小时”。
在解释大数据时代不需要精准性时,迈尔大叔这样写道:
“互联网上最火的网址都表明,它们欣赏不精确而不会假装精确。当一个人在网站上见到一个Facebook的“喜欢”按钮时,可以看到有多少其他人也在点击。当数量不多时,会显示像“63”这种精确的数字。当数量很大时,则只会显示近似值,比方说“4000”。这并不代表系统不知道正确的数据是多少,只是当数量规模变大的时候,确切的数量已经不那么重要了。另外,数据更新得非常快,甚至在刚刚显示出来的时候可能就已经过时了。所以,同样的原理适用于时间的显示。谷歌的Gmail邮箱会确切标注在很短时间内收到的信件,比方说“11分钟之前”。但是,对于已经收到一段时间的信件,则会标注如“两个小时之前”这种不太确切的时间信息。”
4000个“赞”或者两小时(120分钟)也是大数据?我开始崩溃了!
我想是不是迈尔大叔可能考虑到我们对过万的数字数不过来所以有意简化,挑选我们能够理解的“大数据”来说明他的论断。
指鹿为马是谓荒唐。可是,如果对马没有定义,那指鹿为马就无所谓了。
呵呵,迈尔大叔还真幽默。
何为大数据时代?
我读西洋人写的书,总是觉得读书时很爽,读完后基本记不住。读《大数据时代》也有同感。很多很多的大数据例子,读完合上书后基本上一个都记不住。不过迈尔大叔可能知道我的这个毛病,所以提纲挈领,总结了大数据时代的三大特征。这就是地球人都知道的大数据时代的三大特征:1)不是随机样本,而是全体数据;2)不是精准性,而是混杂性;3)不是因果关系,而是相关关系。
一本书,三句话,一个时代的特征!楚汉河界,泾渭分明,一目了然。
小数据时代是随机样本、精准性和因果关系,大数据时代是全体数据、混杂性和相关关系。
可是我的脑子就是转不过来,没法从迈尔大叔的三个简单扼要的特征总结中悟出大数据时代来。这个看上去忒简单的总结,其实真的很深奥。简直可谓深不可测!
一大堆的问题等着迈尔大叔来回答。
比如说,是不是大数据时代就不要随机取样分析了?小数据时代是否也有所谓的全体数据?比如说30年前互联网未流行前美国银行或保险公司拥有的数据是不是全体数据?怎样定义全体数据?谷歌、百度、FACEBOOK或者腾讯,哪个公司拥有所谓的全体数据?为什么有了全体数据分析就要完全抛弃随机样本分析?如果考虑到随机样本分析会影响到分析结果的精度,不是大数据时代不追求精度吗?
关于大数据时代不要精准性,我怎么也拐不过弯来。你说,大数据时代的老师教学生“2+2或许等于3.9”,公司会计记账错了也可以对老板理直气壮地说“现在是大数据时代了”,甚至到饭店吃饭付账也不要精准了....。.呵呵,这日子还让不让人活啊?!
还有有关因果关系和相关性的问题,这也要命!我一直认为人与猴子的根本区别在于人喜欢问个“为什么?”。原本两个猴子,一个不断好奇地问“为什么日落就要睡觉”,结果大脑不断进化变成了人;另一个只是看到日落就上树睡觉,结果至今还是猴子。现在好了,大数据时代不需要问“为什么”了,岂不苦了我们从猴子变人过程中长期培育起来的好奇心了。
因果关系与相关关系的区别,就是因果关系在相关关系上问了个”为什么“。
流传甚广的有关超市将啤酒与尿布一起卖的大数据例子。说是通过大数据分析发现,人们在买尿布时通常也会买啤酒,于是就将啤酒与尿布陈列在一起卖。
如果你生活在大数据时代,故事到此结束了。
如果你还好奇地想知道为什么人们买尿布时要买啤酒。呵呵,对不起,你和我一样还生活在小数据时代。
我们无疑生活在一个互联网的时代,这是一个充满海量数据的世界。数据的多种形式、数据的多种来源、数据之间的多种复杂的联系,都使我们这个世界变得更加神秘但也更加激动人心。这就是大数据时代。
对大数据时代的探索,犹如当年美国对西部的探险,充满许多传说和神话。《大数据时代》或许可能就是这样一本充满神话与传说的探险记。我们为之心动,但依旧要活在现实的生活中,现实生活中的那些规律依旧适用。
即使是大数据时代,我们依旧需要问”为什么“,我们依旧需要教会孩子“2+2=4”,我们甚至依旧要做随机样本分析。
大数据并没有改变我们现有社会的基本生活逻辑。
大数据时代,平常人,平常心。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12