
专访英特尔中国研究院院长吴甘沙:期待数据开放带来真正的大数据时代
吴甘沙,2000年加入英特尔,2011年晋升为首席工程师,同年他共同领导公司的大数据中长期技术规划。在英特尔工作期间,他发表10余篇学术论文,有22项美国专利,14项专利进入审核期。
在英特尔中国研究院院长吴甘沙的微博上,有一句英文的自我简介,可大致译为“勇敢而与众不同地思考大数据”。自2011年担任英特尔首席工程师以来,他一直主持研究院大数据方面的研究。站在大数据思维和技术研发“潮头”的他认为,研究大数据的乐趣在于“当大多数人在考虑第N个阶段的时候,开始考虑N 1个阶段”。
当前,贵州也站在了大数据产业的“潮头”。而环顾全球,大数据正以燎原之势,从一个热词迅速转化为科研院所、政府、企业、个人共同关注、研究、应用的对象,一种新的生产力正蓬勃兴起。贵州、贵阳要引领发展趋势,对话大数据专家,从他们那儿汲取智慧是一种事半功倍的途径。为此,记者近日专访了吴甘沙。
大数据是指数社会的蛋白质
“如果以世纪之交作为分隔线,上世纪的数据文化、思维和方法论还停留在前大数据时代,真正意义上的大数据思想本世纪初才破茧而出。”吴甘沙说。
“2012年,大数据成为显学。”吴甘沙介绍,这一年,达沃斯的《大数据,大影响:全球发展的新可能》和奥巴马政府的《大数据研发计划》共同确立了大数据在世界范围的战略位置,而涂子沛《大数据》和舍恩伯格《大数据时代》在国内的出版,也使2012年被称作中国的大数据元年。
对于大数据,吴甘沙常常理解为:“摩尔定律是指数社会的基因,而大数据是指数社会的蛋白质。”上世纪60、70年代,英特尔创始人之一的戈登·摩尔提出:当价格不变时,集成电路上可容纳的元器件的数目,约每隔18-24个月便会增加一倍,性能也将提升一倍。这一定律常常被用来形容信息技术进步的速度。而吴甘沙认为,随着移动互联时代的到来,数据爆发式增长在量上也越来越符合摩尔定律的指数递增规律。
“基因决定生命特征,是初始点,而蛋白质是生命的物质基础,是生命活动的主要承担者,也就是说,大数据会越来越像原材料,像货币,变成社会生命活动的主要承担者,关系到每一个人的数据化生存。”吴甘沙断言。
他进而举例说,在大数据、云计算、移动互联网和物联网等现代前沿信息技术之中,大数据是根本和核心,云计算是方式和手段,移动互联网、物联网则是物化大数据和云计算价值的应用。
大数据发挥作用的关键在于数据开放
当下,“互联网+”这一名词及其对应的发展趋势正方兴未艾,而吴甘沙则提出了“大数据×”这一说法。他说,大数据与很多传统产业融合在一起能够产生乘法效应,不同产业之间融合还能产生数据外部效应,即一个产业的数据如果用于另外一个产业,能迸发出巨大价值。
在研究中,吴甘沙越来越发现,乘法效应要充分发挥,必须走数据开放之路,让不同领域的数据真正流动起来、融合起来。“最开始,大数据的主要矛盾是互联网公司或在线数据太多的问题,接着,主要矛盾变成人没有能力从数据中提取价值的问题,最后主要矛盾变成中小公司、传统行业无法获得数据,数据孤岛的问题。”吴甘沙说,正因为如此,最近四五年,他个人的研究方向也从关注数据与机器的关系到关注数据与人,再到眼下关注数据与数据的关系。
那么,哪些数据适合开放呢?吴甘沙认为:“不涉及个体的公共数据和科研数据都可以开放,涉及个体的数据要明确数据权属、隐私界定,获得拥有者授权,采用技术匿名化之后再考虑开放。”他同时建议,可以借鉴英美,开放原始数据,而非提炼数据,保证数据满足蒂姆·伯纳斯-李提出的数据开放五星标准。
目前,贵阳正通过宽带贵阳和全域公共免费WiFi城市建设,推动社会企业和个人动态数据的“块”上集聚。吴甘沙认为,WiFi采集数据的优点就是有数据发生所在地点的信息,方便把数据放到不同的语境中分析。但他也坚持,在数据集聚之后,同样需要明确获得用户对数据的授权。
数据交易定价机制仍待实践中摸索
广义的数据开放还包括数据的共享及交易。吴甘沙认为,在大数据时代,如何让数据变成政府决策、企业经营的第一要素,数据的交易显得尤为关键。
4月14日,贵阳大数据交易所完成了首批交易。在吴甘沙看来,这样一个基于市场进行价值发现和定价,连通大数据供需双方,让数据像股票交易那样高频率碰撞的交易市场,在大数据时代是大势所趋。
但他同时指出,无论是数据的交易,还是交易过程中数据的定价,现在都没有标准的答案,“一来要从实践中摸索,二来要有意识地跟经济界做思想碰撞。”他举例说,数据在公开市场交易的时候,是根据市场价值发现机制来定价,根据数据的种类来定价,还是根据数据访问API的调用次数来定价?企业的数据资产价值几何?个人数据是否也需要定价,它的价值是不是应该由个人自己来享受,而不是完全让互联网服务提供商从中获益……
尽管这些困惑尚无定论,但吴甘沙认为这也正是大数据的魅力所在。对于大数据,深耕多年的他认为,乐趣在于“当大多数人在考虑第N个阶段的时候,开始考虑N 1个阶段”。
对于正在争先发展大数据的贵阳,吴甘沙认为过去一年多的工作“非常棒”,他同时给出建议:要想在与北京等发达地区发展大数据的竞争中不落伍,人才聚集和可持续的供给非常关键。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10