京公网安备 11010802034615号
经营许可证编号:京B2-20210330
专访英特尔中国研究院院长吴甘沙:期待数据开放带来真正的大数据时代
吴甘沙,2000年加入英特尔,2011年晋升为首席工程师,同年他共同领导公司的大数据中长期技术规划。在英特尔工作期间,他发表10余篇学术论文,有22项美国专利,14项专利进入审核期。
在英特尔中国研究院院长吴甘沙的微博上,有一句英文的自我简介,可大致译为“勇敢而与众不同地思考大数据”。自2011年担任英特尔首席工程师以来,他一直主持研究院大数据方面的研究。站在大数据思维和技术研发“潮头”的他认为,研究大数据的乐趣在于“当大多数人在考虑第N个阶段的时候,开始考虑N 1个阶段”。
当前,贵州也站在了大数据产业的“潮头”。而环顾全球,大数据正以燎原之势,从一个热词迅速转化为科研院所、政府、企业、个人共同关注、研究、应用的对象,一种新的生产力正蓬勃兴起。贵州、贵阳要引领发展趋势,对话大数据专家,从他们那儿汲取智慧是一种事半功倍的途径。为此,记者近日专访了吴甘沙。
大数据是指数社会的蛋白质
“如果以世纪之交作为分隔线,上世纪的数据文化、思维和方法论还停留在前大数据时代,真正意义上的大数据思想本世纪初才破茧而出。”吴甘沙说。
“2012年,大数据成为显学。”吴甘沙介绍,这一年,达沃斯的《大数据,大影响:全球发展的新可能》和奥巴马政府的《大数据研发计划》共同确立了大数据在世界范围的战略位置,而涂子沛《大数据》和舍恩伯格《大数据时代》在国内的出版,也使2012年被称作中国的大数据元年。
对于大数据,吴甘沙常常理解为:“摩尔定律是指数社会的基因,而大数据是指数社会的蛋白质。”上世纪60、70年代,英特尔创始人之一的戈登·摩尔提出:当价格不变时,集成电路上可容纳的元器件的数目,约每隔18-24个月便会增加一倍,性能也将提升一倍。这一定律常常被用来形容信息技术进步的速度。而吴甘沙认为,随着移动互联时代的到来,数据爆发式增长在量上也越来越符合摩尔定律的指数递增规律。
“基因决定生命特征,是初始点,而蛋白质是生命的物质基础,是生命活动的主要承担者,也就是说,大数据会越来越像原材料,像货币,变成社会生命活动的主要承担者,关系到每一个人的数据化生存。”吴甘沙断言。
他进而举例说,在大数据、云计算、移动互联网和物联网等现代前沿信息技术之中,大数据是根本和核心,云计算是方式和手段,移动互联网、物联网则是物化大数据和云计算价值的应用。
大数据发挥作用的关键在于数据开放
当下,“互联网+”这一名词及其对应的发展趋势正方兴未艾,而吴甘沙则提出了“大数据×”这一说法。他说,大数据与很多传统产业融合在一起能够产生乘法效应,不同产业之间融合还能产生数据外部效应,即一个产业的数据如果用于另外一个产业,能迸发出巨大价值。
在研究中,吴甘沙越来越发现,乘法效应要充分发挥,必须走数据开放之路,让不同领域的数据真正流动起来、融合起来。“最开始,大数据的主要矛盾是互联网公司或在线数据太多的问题,接着,主要矛盾变成人没有能力从数据中提取价值的问题,最后主要矛盾变成中小公司、传统行业无法获得数据,数据孤岛的问题。”吴甘沙说,正因为如此,最近四五年,他个人的研究方向也从关注数据与机器的关系到关注数据与人,再到眼下关注数据与数据的关系。
那么,哪些数据适合开放呢?吴甘沙认为:“不涉及个体的公共数据和科研数据都可以开放,涉及个体的数据要明确数据权属、隐私界定,获得拥有者授权,采用技术匿名化之后再考虑开放。”他同时建议,可以借鉴英美,开放原始数据,而非提炼数据,保证数据满足蒂姆·伯纳斯-李提出的数据开放五星标准。
目前,贵阳正通过宽带贵阳和全域公共免费WiFi城市建设,推动社会企业和个人动态数据的“块”上集聚。吴甘沙认为,WiFi采集数据的优点就是有数据发生所在地点的信息,方便把数据放到不同的语境中分析。但他也坚持,在数据集聚之后,同样需要明确获得用户对数据的授权。
数据交易定价机制仍待实践中摸索
广义的数据开放还包括数据的共享及交易。吴甘沙认为,在大数据时代,如何让数据变成政府决策、企业经营的第一要素,数据的交易显得尤为关键。
4月14日,贵阳大数据交易所完成了首批交易。在吴甘沙看来,这样一个基于市场进行价值发现和定价,连通大数据供需双方,让数据像股票交易那样高频率碰撞的交易市场,在大数据时代是大势所趋。
但他同时指出,无论是数据的交易,还是交易过程中数据的定价,现在都没有标准的答案,“一来要从实践中摸索,二来要有意识地跟经济界做思想碰撞。”他举例说,数据在公开市场交易的时候,是根据市场价值发现机制来定价,根据数据的种类来定价,还是根据数据访问API的调用次数来定价?企业的数据资产价值几何?个人数据是否也需要定价,它的价值是不是应该由个人自己来享受,而不是完全让互联网服务提供商从中获益……
尽管这些困惑尚无定论,但吴甘沙认为这也正是大数据的魅力所在。对于大数据,深耕多年的他认为,乐趣在于“当大多数人在考虑第N个阶段的时候,开始考虑N 1个阶段”。
对于正在争先发展大数据的贵阳,吴甘沙认为过去一年多的工作“非常棒”,他同时给出建议:要想在与北京等发达地区发展大数据的竞争中不落伍,人才聚集和可持续的供给非常关键。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27