京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代 运营商机会大于挑战_数据分析师培训
移动互联网发展起来之后,运营商在近两三年开始关注大数据。大数据不是新的概念,在移动互联网发展起来后,数据增长速度加快,整个产业压力突出,传统数据库技术已无法满足运营商对大数据充分利用的需求的背景下,大数据成为近年来的热点。对运营商来说,数据爆发性增长后,带来的收入并未改观,因此,运营商面临着数据流的附加值被互联网公司赚走的挑战,同时面临沦为管道化的尴尬,如何利用好运营商手中的大数据,成为需要面对的问题。
运营商面临数据管理和分析挑战
易观国际分析师黄萌表示,大数据发展时间不长,随着云概念和3G的深入发展,运营商数据压力增大,同时IDC扩容,偏向以存储为主的云服务业务。
运营商新业务的涌现,导致数据暴增。信令数据、互联网数据其规模已经达到数百TB,甚至PB规模。此外,据EMC 数据计算事业部大中国区总经理刘伟光介绍,数据的价值除了与数据规模相关,还与数据处理周期成正比关系。也就是,数据处理的速度越快、越及时,其价值越大,发挥的效能越大。而除了分析传统结构化数据外,随着新增值业务拓展,运营商对实现跨结构化、半结构化、非结构化数据进行高效分析有着愈发强烈的诉求。
而运营商面对海量数据和数据结构的变化,不仅是成本,还有管理和分析的挑战。黄萌认为,运营商相对互联网企业有优势,具有雄厚的资源和庞大的IDC集群,拥有电信级的运营网络,具有保证大数据实时、畅通传送的能力,同时具有网络资源和运营能力。而相对互联网企业劣势的地方在于上层应用,尤其是在Saas层面。
大数据有待深挖掘
南京邮电大学卢捍华教授认为,大数据时代主要是对技术的综合运用和对数据的深度挖掘。对运营商来说,大数据带来的机会大于挑战。运营商有自己的网络,积累了大量非常有价值的数据,可以进行客户分析。利用网络收集数据,对运营商运营方式的改变是个机会。
真正实现精准化营销和精细化运营的秘诀就在于如何利用好运营商手中的大数据。海量话单、信令、互联网数据本身就是一笔宝贵的财富。利用好这些数据,充分、及时地对这些数据进行深度分析挖掘,不仅可以进一步提升服务质量、提高客户忠诚度、挖掘新商机、增加收入,还可以通过优化资源配置、减少浪费来提升运营效率,有效降低运营成本。
此外,电信运营商信息化实施比较早,本身大数据积累的也多,例如以前的日志信息,包含用户信息和设备信息,可以进行挖掘使用。运营商越来越重视对数据的挖掘,可以获得未来开发业务和开拓市场的机会。另一方面,分析结果不会涉及隐私,管理好了可以更少产生法律纠纷。此外,电信运营商通过数据分析还可以提供面向社会的信息应用。
卢捍华教授认为,大数据是对技术的综合应用,要有开放、融合、服务和创新的心态,大数据可以为运营商创造另一片天地。例如一个大数据的应用通过收集数据,对大量图片进行分析,最终形成一个场景图。这就是对数据分析、统计技术、图片处理技术和人工智能合成技术的综合运用。据悉,南邮正在开发这方面的应用。
据了解,目前中国三个电信运营商在业务支撑领域、网管IT支撑领域包括增值业务领域,已经随着市场的需求诞生了很多新的大数据实时分析的项目。目前,大数据主要应用在运营商的“信令”系统分析上,此外,运营商还可以通过“用户行为分析”系统,进行精准营销。运营商还提供IDC服务,通过“云”中心的方式为互联网企业提供服务。
对公市场前景巨大
黄萌表示,单批、单次数据爆发性增长,对其进行的可知的时间处理能力是关键点。对运营商来说,IDC服务在对政府和高校、企业等非个人业务市场上前景巨大;对于个人业务,运营商刚开始做,由于回收投资较慢、离散性强,现在主要是针对个人精准运营的业务。智能管道方面,运营商正在基于大数据平台进行流量分析,但是落地的项目少。
据介绍,运营商大数据战略还不太明晰,但是有了一些建树。去年十月份中国移动开始做的“大云”、数据管理系统和平台,覆盖很多园区、学校,2.0技术比1.0技术大幅提升;中国联通2010年开始对企业提供IDC服务,截至目前,营收超20亿元(人民币);中国电信2011年成立云公司,尚无实体业务,IDC托管规模相对联通小很多。
据电信专家韩少敏介绍,数据类型分为非结构化数据和媒体流,运营商开展大数据分析面对的问题主要是硬件能力。数据一方面是纵向关系,比如“信令”,采用水平分隔数据的方式就可以,按照时间段分别存储分析。此外还有横向关系,需要垂直分隔,由于查询复杂,需要引入真正的算法去做。韩少敏认为,目前掌握这方面能力的人才奇缺。并且,运营商在分布式数据库方面少有进展。而从应用角度,大数据一方面用作于统计分析,建数据仓库,其次还有非文本查询,现在大多数数据库公司可以做以上两个方面,而对于关系型数据共享层面,目前还做不了。
中国联通在IDC服务方面走在三家运营商前面,其面向企业提供服务,目前通过按关系水平分隔的方式,将数据集中起来,但是一旦到关系型数据的共享层面,因为没有数据模型,找不到底层的数据库血缘,目前的方案无法解决问题。但是运营商目前做这些数据积累,可以为将来发展提供机会。
刘伟光认为,对于运营商来说,大数据等于大价值。对于IT企业,大数据等于大机遇。通信行业需求从来都是IT技术发展的重要推动力,谁能得到通信行业客户的认可,必然会在大数据领域大有作为,进而成为大数据解决方案的领先者、领导者。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27