
大数据时代 运营商机会大于挑战_数据分析师培训
移动互联网发展起来之后,运营商在近两三年开始关注大数据。大数据不是新的概念,在移动互联网发展起来后,数据增长速度加快,整个产业压力突出,传统数据库技术已无法满足运营商对大数据充分利用的需求的背景下,大数据成为近年来的热点。对运营商来说,数据爆发性增长后,带来的收入并未改观,因此,运营商面临着数据流的附加值被互联网公司赚走的挑战,同时面临沦为管道化的尴尬,如何利用好运营商手中的大数据,成为需要面对的问题。
运营商面临数据管理和分析挑战
易观国际分析师黄萌表示,大数据发展时间不长,随着云概念和3G的深入发展,运营商数据压力增大,同时IDC扩容,偏向以存储为主的云服务业务。
运营商新业务的涌现,导致数据暴增。信令数据、互联网数据其规模已经达到数百TB,甚至PB规模。此外,据EMC 数据计算事业部大中国区总经理刘伟光介绍,数据的价值除了与数据规模相关,还与数据处理周期成正比关系。也就是,数据处理的速度越快、越及时,其价值越大,发挥的效能越大。而除了分析传统结构化数据外,随着新增值业务拓展,运营商对实现跨结构化、半结构化、非结构化数据进行高效分析有着愈发强烈的诉求。
而运营商面对海量数据和数据结构的变化,不仅是成本,还有管理和分析的挑战。黄萌认为,运营商相对互联网企业有优势,具有雄厚的资源和庞大的IDC集群,拥有电信级的运营网络,具有保证大数据实时、畅通传送的能力,同时具有网络资源和运营能力。而相对互联网企业劣势的地方在于上层应用,尤其是在Saas层面。
大数据有待深挖掘
南京邮电大学卢捍华教授认为,大数据时代主要是对技术的综合运用和对数据的深度挖掘。对运营商来说,大数据带来的机会大于挑战。运营商有自己的网络,积累了大量非常有价值的数据,可以进行客户分析。利用网络收集数据,对运营商运营方式的改变是个机会。
真正实现精准化营销和精细化运营的秘诀就在于如何利用好运营商手中的大数据。海量话单、信令、互联网数据本身就是一笔宝贵的财富。利用好这些数据,充分、及时地对这些数据进行深度分析挖掘,不仅可以进一步提升服务质量、提高客户忠诚度、挖掘新商机、增加收入,还可以通过优化资源配置、减少浪费来提升运营效率,有效降低运营成本。
此外,电信运营商信息化实施比较早,本身大数据积累的也多,例如以前的日志信息,包含用户信息和设备信息,可以进行挖掘使用。运营商越来越重视对数据的挖掘,可以获得未来开发业务和开拓市场的机会。另一方面,分析结果不会涉及隐私,管理好了可以更少产生法律纠纷。此外,电信运营商通过数据分析还可以提供面向社会的信息应用。
卢捍华教授认为,大数据是对技术的综合应用,要有开放、融合、服务和创新的心态,大数据可以为运营商创造另一片天地。例如一个大数据的应用通过收集数据,对大量图片进行分析,最终形成一个场景图。这就是对数据分析、统计技术、图片处理技术和人工智能合成技术的综合运用。据悉,南邮正在开发这方面的应用。
据了解,目前中国三个电信运营商在业务支撑领域、网管IT支撑领域包括增值业务领域,已经随着市场的需求诞生了很多新的大数据实时分析的项目。目前,大数据主要应用在运营商的“信令”系统分析上,此外,运营商还可以通过“用户行为分析”系统,进行精准营销。运营商还提供IDC服务,通过“云”中心的方式为互联网企业提供服务。
对公市场前景巨大
黄萌表示,单批、单次数据爆发性增长,对其进行的可知的时间处理能力是关键点。对运营商来说,IDC服务在对政府和高校、企业等非个人业务市场上前景巨大;对于个人业务,运营商刚开始做,由于回收投资较慢、离散性强,现在主要是针对个人精准运营的业务。智能管道方面,运营商正在基于大数据平台进行流量分析,但是落地的项目少。
据介绍,运营商大数据战略还不太明晰,但是有了一些建树。去年十月份中国移动开始做的“大云”、数据管理系统和平台,覆盖很多园区、学校,2.0技术比1.0技术大幅提升;中国联通2010年开始对企业提供IDC服务,截至目前,营收超20亿元(人民币);中国电信2011年成立云公司,尚无实体业务,IDC托管规模相对联通小很多。
据电信专家韩少敏介绍,数据类型分为非结构化数据和媒体流,运营商开展大数据分析面对的问题主要是硬件能力。数据一方面是纵向关系,比如“信令”,采用水平分隔数据的方式就可以,按照时间段分别存储分析。此外还有横向关系,需要垂直分隔,由于查询复杂,需要引入真正的算法去做。韩少敏认为,目前掌握这方面能力的人才奇缺。并且,运营商在分布式数据库方面少有进展。而从应用角度,大数据一方面用作于统计分析,建数据仓库,其次还有非文本查询,现在大多数数据库公司可以做以上两个方面,而对于关系型数据共享层面,目前还做不了。
中国联通在IDC服务方面走在三家运营商前面,其面向企业提供服务,目前通过按关系水平分隔的方式,将数据集中起来,但是一旦到关系型数据的共享层面,因为没有数据模型,找不到底层的数据库血缘,目前的方案无法解决问题。但是运营商目前做这些数据积累,可以为将来发展提供机会。
刘伟光认为,对于运营商来说,大数据等于大价值。对于IT企业,大数据等于大机遇。通信行业需求从来都是IT技术发展的重要推动力,谁能得到通信行业客户的认可,必然会在大数据领域大有作为,进而成为大数据解决方案的领先者、领导者。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26