京公网安备 11010802034615号
经营许可证编号:京B2-20210330
环境大数据互联时代将到来_数据分析师培训
近年来,互联网为解决环境问题创造了前提条件。通过互联网的应用,可以实现环境数据、信息等要素互通共享,从而推动环境问题得到整体有效解决。公众舆论借助互联网将对企业排污形成巨大压力,督促其有效治污,也将推动环境改善因素由单一政府向全社会延伸。
预计在互联网的影响下,环保领域将迎来一个大数据互联时代。
线上线下有效互动
环保物联网覆盖范围将扩大,人人参与的大环境形成
目前,我国已经基本建立起了污染排放监控体系,特别是对于国控、省控、市控重点污染企业。然而,这些数据的真实性、有效性、公开性却一直受到不同程度的质疑。
随着信息技术日益完善普及,特别是新《环保法》的实施将为有力打击环境违法行为提供重要法律支撑,使“线上数据+线下执法”的模式配合大有可为。在推动环境改善驱动因素由单一政府向全社会延伸过程中,环境相关信息及数据的价值将得到显现。
一方面,预计未来除现有重点污染企业之外,大量“漏网之鱼”将逐步纳入监测体系并进行全面监控,环保物联网覆盖范围有望显著扩大。而来自民间的环境信息也将通过移动互联网等渠道大量涌现,使环境大数据具备坚实基础。与此同时,实施数据打假及信息公开并为后续执法提供更强支撑。
另一方面,预计未来建设环境监察移动执法系统的机构以及执法人员比例都将大幅增加,从而实现公众、企业、执法单位从线上到线下的有效互动,形成人人参与的环保大环境。
环境质量得到更多关注
多渠道信息检验治污效果,排污企业将改变 “验收导向”方式
今年以来,无论政府层面还是公众方面,在总量减排的基础上,更多提出环境质量的改善。相关指标有望逐步取代单一的污染物减排数字,成为“十三五”以及未来中长期环境规划的重要导向。
因此,从多渠道获得的环境质量数据,有望成为检验治污工程是否真实有效的关键考量。排污企业也将改变传统“验收导向”思维方式,更加倾向于选择具备技术和资金优势、能够真正解决问题的环境服务商。
大数据来源有哪些?
环境质量、污染源排放和个人活动信息将通过互联网互通共享
环境领域将迎来一个大数据互联时代。若要全面呈现环境问题,尤其需要通过互联网实现环境数据、信息等要素互通共享,从而推动环境问题得到整体有效解决。具体来看,目前主要存在以下3种与环境相关的数据来源:
第一,环境质量。这是指外部自然环境质量表征,典型数据信息包括大气、地表水、水资源、土壤、辐射、声、气象等环境质量,通常由政府及有关部门(如环境保护部)公开其制作或获取的环境信息。
基于已经建立起来的以国控、省控、市控3级为主的环境质量监测网,形成信息公开机制,初步勾勒出了我国整体环境质量状况。比如,全国城市空气质量日报/时报(367个城市)、全国主要流域重点断面水质自动监测周报(145个监测断面)、全国辐射环境自动监测站空气吸收剂量率(44个站点)等。
第二,污染源排放。这是造成环境污染的核心原因,具体体现为废水、废气、固废、放射源等形式,主要包括污染源基本情况、污染源监测、设施运行、总量控制、污染防治、排污费征收、监察执法、行政处罚、环境应急等环境监管信息。
《全国污染源普查公报》中的排污数据及信息,将是政府监管以及公众监督的重要前提与基础。目前,各地正逐步落实环境保护部出台的《关于加强污染源环境监管信息公开工作的通知》等文件。以北京市为例,虽然已按季度发布国控企业污染源监督性监测情况,而27家重点排污单位和上市企业仅于今年起初步实现自行监测信息对外发布,实时信息公开仍无法实现。
第三,个人活动产生的与环境相关的数据信息,如用水量、用电量、生活中产生的废弃物等。尽管这些数据拥有巨大的潜在价值,但其分布却呈现天然的分散状态,互联网特别是移动互联网的快速普及应用正在使上述信息的收集利用变得可行。 作者为中信证券公用环保行业高级分析师
相关报道
为传统环保企业开辟新渠道
江苏吴中建立环保产业O2O平台
中国环境报见习记者 韩东良 苏州报道 记者日前获悉,江苏省苏州市吴中区将建立环保产业O2O平台(即Online线上网店Offline线下消费电子商务平台)。
据了解,中能泰可网络科技(苏州)有限公司将打造集环保产业的O2O全球展示交易、环保会展服务、环保技术交流、环保综合服务、电子商务运营、人才培训、仓储物流、金融服务及其他配套服务于一体的大型一站式环保产业O2O平台。O2O平台是指把线下的商务机会与互联网结合,为传统的环保企业开辟新的市场渠道。
截至目前,来自全国的50多家环保企业达成了初步意向。预计到今年7月,入驻的环保企业将达到2000家左右。未来,平台还将聚集一批在绿色能源、绿色建筑、绿色交通、环境安全、环境治理、环境健康、清洁生产、新材料、资源循环利用、环境信息产业、环境综合服务等领域具备先进技术和创新服务机制的企业和环保综合服务机构。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16