京公网安备 11010802034615号
经营许可证编号:京B2-20210330
75.9%受访者发现存在“大数据”滥用现象
电子科技大学互联网科学中心主任、《大数据时代》中文翻译者周涛认为,企业有没有“大数据”能力,分析报告是否包含“大数据”成分,要看是否具备两个特征:一是数据本身要具有一定规模,肯定不同于以前社会科学控制实验中几十几百人的规模;二是数据分析结果要能够提供深刻洞见,不是简单的统计分析,譬如“某社交网络1000万用户中45%是男性”、“全国春运最热航线是北京到上海”,这些都不是“大数据”。
近年来,从技术界走出来的“大数据”逐渐受到社会各界的高度关注,在社会管理、企业营销、青年就业创业等方面都发挥出很大作用。但到底什么是“大数据”,很多人对此还有疑惑。同时,“大数据”被迅速广泛引用也引发人们对滥用的担忧。
近日,中国青年报社会调查中心通过民意中国网和手机腾讯网对2315人进行的一项调查显示,43.6%的受访者认为“大数据”分析意义很大,但80.0%的受访者也确认自己不清楚什么是“大数据”,75.9%的受访者发现目前存在“大数据”被滥用的现象。
80.0%受访者不清楚什么是“大数据”
调查中,听说过和没听说过“大数据”的受访者各占一半。80.0%的受访者直言不清楚什么是“大数据”,表示“非常清楚”和“比较清楚”的受访者分别仅占8.3%和11.6%。
北京大学信息工程学院计算机应用技术专业研一学生卿,这学期正在学习一门关于调研“大数据”的课程。谈及如今的“大数据”热,卿显得有些激动。他说,“大数据”可以帮助人们了解平时注意不到的信息,还可以预测未来,比如可以根据机票涨降情况确定最佳购票时机,根据人们的搜索记录更早地预测流感传播。
卿表示,如今很多企业都在说“大数据”,其中不乏“跟风”现象。有些数据分析贴上“大数据”标签,瞬间就显得“高大上”,其实并没有真正的“大数据”分析。
统计学专业毕业的王京也认为,现在有些标榜“大数据”的报告,一方面数据量不大,另一方面也不是“大数据”的思维。“大数据”讲究效率、针对个人,但很多类似于“大数据教你谈恋爱”这样的说法,更多是一种噱头。
调查中,75.9%的受访者发现“大数据”存在被滥用的现象。
电子科技大学互联网科学中心主任、《大数据时代》中文翻译者周涛说,的确有一些企业在商务智能时代没有学好商务智能,到了大数据时代才刚刚学会商务智能,就说自己是“大数据”。
周涛认为,一个企业有没有“大数据”能力,一个分析报告是否包含“大数据”成分,要看是否具备两个特征:一是数据本身要具有一定规模,肯定不同于以前社会科学控制实验中几十几百人的规模;二是数据分析结果要能够提供深刻洞见,不是简单的统计分析,譬如“某社交网络1000万用户中45%是男性”、“全国春运最热航线是北京到上海”,这些都不是“大数据”,只是非常简单的分析方法在稍微大一点的数据集上的应用。举个例子,通过分析春运人口迁移路线、迁移方式(体现了经济水平)以及购票人的身份证信息(体现了年龄和籍贯),来对中国劳动人口的流动现状进行刻画,并对未来中国劳动力流动与分布形态进行预测,这就有一点“大数据”的影子了。
王京觉得,我们的传统比较偏重人文主义、缺乏数据思维,这些“大数据”的说法虽然存在问题,在专业性上过不了关,但对于推广数据化思维、养成用数据说话的观念是有意义的。
35.6%受访者觉得一些“大数据”分析空有大量数据
南京大学计算机专业博士高坤(化名)说,现在“大数据”还存在很多问题,比如数据的所有权问题、隐私问题、安全问题等,都需要尽快解决。
周涛认为,很多人分不清安全和隐私。安全问题一直都有,主要是指攻击方通过一些手段盗取信息或破坏信息。使用数据的企业,在接触敏感甚至涉密信息时,应该有安全资质的认证。这在我国的运营商体系和金融体系里都有明确要求。
“经常和安全问题混为一谈的,是数据隐私的问题。”周涛说,一方面,隐私数据直接泄露,或者有不法人士售卖这些信息,另一方面,一些隐私信息通过技术手段遭到破译。这样就可能给个人或商家带来伤害,比如一些招聘网站的个人求职信息被破译之后,会对个人造成伤害,也会让招聘企业无法阻断信息,失去盈利空间。
“除去法律层面、道德层面,科学技术层面上也还有很多问题需要解决。”高坤说,有这么多数据,具体怎么处理,还需要更好地研究。现在很多“大数据”只是存储下来,缺少进一步分析,但是把海量数据存储下来本身也是技术进步,是“大数据”工作的一部分。
王京说,一方面,没有有效的方法来分析数据,另一方面,很多平台没有打通,比如说一个人上网不只买东西,还会聊天,聊天对买东西是有影响的,但是聊天的数据和买东西的数据无法对接起来,无法产生商业价值。
调查中,35.6%的受访者觉得现在一些“大数据”分析空有大量数据,30.8%的受访者认为缺乏数据安全,11.1%的受访者提出缺乏科学性,9.3%的受访者指出分散数据没有有效整合,7.8%的受访者认为存在“大数据”与传统分析概念混淆的情况。
43.6%受访者认为“大数据”分析意义很大
调查显示,43.6%的受访者认为“大数据”分析的意义很大,7.0%的受访者认为不太大,9.5%的受访者觉得“大数据”分析没什么意义,39.8%的受访者表示不好说。
90后北大研究生刘环是在一次讲座上了解到了“大数据”。刘环认为,“大数据”确实还存在很多问题,但不可否认生活、学习中的很多细节也因“大数据”而改变,比如现在用的翻译工具越来越智能化,一些输入法更人性化,这些都归功于“大数据”分析,相信“大数据”会有更大发展空间。
王京说,虽然“大数据”现在还在试验、探索阶段,但是“大数据”很重要,跟我们每个人生活都息息相关。原来的数据生产是由专业机构去做,现在我们每天都在生产数据,只要有媒介的地方就会产生数据。“数据科学家的文本分析、行为分析,都是能带来价值的,比如现在的微博、微信等,通过数据分析就能带来商业价值”。
周涛表示,“大数据”分析的意义主要体现在:一、挖掘数据中潜藏的关联关系甚至因果关系;二、对数据整体中缺失的信息进行预测;三、对数据所代表的系统走势进行预测;四、支持对数据所在系统功能的优化,或者对决策起到评估和支撑作用。
高坤认为,“大数据”本身是一种新的科学手段,虽然目前还不成熟,但已经开始受到科学家的关注。“大数据”对于经济、国防,都是最重要的科技手段。青年应该更多地关注科学技术的发展,从科技的角度来理解“大数据”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28