
如何利用大数据思维在北京租到好房子_数据分析市场培训
第一步:精准定位。
确定找房地点,精确到小区。每个小区在任意时间,至少有三五间空房待租。大的小区,有几十间。完全不要担心没房。如果没有,基本是因为数据挖掘的能力不足。五环之内,如果两个毗邻的小区都没有空房,中国经济就要出大问题了。但一个小区的数据少,是很常见的。所以,我一般至少收罗4个小区的数据。
比如,我在凤凰网上班,要到市区,就会选择在地铁站和单位沿线的小区。
凤凰网到望京地铁站3公里,步行30分钟。
最理想的小区是A,其次是B、C、D。
第二步:数据挖掘。
这一步是个技术活,很关键。技术体现在你依据哪些指标进行挖掘。
我总结个口诀,叫“四看四不看”。
四看:看小区、看价位、看个人、看户型。
1、看小区。不要以地铁站诸如“望京”来搜索,要定位精准。
2、看价格。价格没有太多回旋的余地。在北京,五环左右和别人合租,单间的价钱基本不会超过2000。望京一带,单间基本是1500到2000。低于1500的条件不好,高于2000的又偏贵。
3、看个人房源。“100%个人房源”都会碰到中介。不要对中介寄予任何希望。但可以利用中介,就是在个人房源实在找不到的时候,找中介带你看一两家,熟悉一下行情。别看太多,因为人家中介挣钱也不容易。既然不打算走中介,别太麻烦人家。
4、看户型。户型数据未必真实。有些三室一厅的,客厅被隔断,住6家。我看到4室的基本不考虑。除非数据实在不够,也会抄上备用。合租人多会出现极大的麻烦,没人会主动倒洗手间的厕纸。而收水电费时有人拖欠不交就更让你苦恼了。
四不看:不看照片。不看设施、不看装修、不看面积。
1、不看照片。“有图有真相”这句话在两种地方万万不能相信,一种是租房网站上,一种是女生朋友圈自拍。记住,一定要看现场。照片拍得天花乱坠,没有用。
2、不看设施。不要去比较写的有空调没空调,有些有空调,但可能根本不制冷了。有些没空调,纯粹因为房主忘写了。
3、不看装修。中等装修、装修很好,这些描述太主观。很多冒充二房东的中介,把破烂的房子写成中等装修。
4、不看面积。同样大小的房子,有人写15平,有人写28平。一样主观。
你都大数据了你还相信主观描述么?一切以现场为准。看主观信息纯粹是浪费时间。
明确了“四看四不看”,半小时你就能找到一堆数据,格式如下:
第三步:剔除无效数据。
上一步挖掘到的数据,有三种是无效的,一种准有效的,一种有效的。
无效数据:
1、电话打不通的。
2、中介冒充个人的。
3、房子已租出去的。
准有效数据:
1、房子还没租出,但人不在家。
有效数据:
1、人在,现在可以看房。
这一步需要到了现场再开始实施。不要边挖掘数据边打电话。只要你的数据样本足够多,不怕不存在有效数据。而且,你先打电话约好时间,到了地方,人可能又不在了。所以,到小区再打电话,然后开始批量剔除。
不好意思,纸片装在裤兜里,天热出汗,就成这熊样子了。
每当你划掉一道线时,心里就多了一分成就感。
第四步:周边调研。
工作日最好下午出发,但做好下午看不到合适房子的准备。因为有正经职业的人,白天基本都在上班。你碰到的很可能是假冒二房东的中介,或者是没有正经职业的。和这些人合租可能会遇到很多问题。比如大白天趁你不在带了一堆狐朋狗友来家里,搞不好在家里吸毒你都不知道。
那下午出发的意义是什么呢?热身。
顺便在小区看看风景。当你时间太急迫的时候,就不会留意小区设施风景、周边吃的玩的和商场多不多,交通是否便利这些了。不要以为这些不重要。越是着急找房子,越不能粗疏。节奏一定要对。急中有缓,由缓而速。
每个小区都有一群群中介。他们走过你身边时,一定要把纸揣好了。让自己像个特务一样,装作若无其事地看大妈跳广场舞。一边看,一边拨出电话。这时,只见一个大妈从广场舞队伍里溜出来了。没错,白天不上班的,不一定是中介,还有可能是退休的房东大妈。
别从位置最优的小区开始。这样,即便看到好房子,你还会对下家有期待。如果先看位置最优的小区,你可能一激动就拍板决定了,这样很容易错失更舒服的房子。
第五步:现场勘查。
不要预设。一定要找带空调的,一定要找有电梯的——太陋(low)了。
记住,你是在用大数据思维找房子,还能提出以上标准吗?
以下指标才是合适的:
1、要木地板,不要地板砖。
地板甚至比电视、空调还重要。卧室是木地板,或者看着像木地板的话,你回到家会感觉很放松,如果是地板砖,就给人一种冰冷的感觉,还像在办公室里。
2、要有客厅,不要隔断。
哪怕你不住隔断,也不要租带隔断的房子。有隔断就意味着没有客厅。有大客厅,基本上就有沙发,沙发前边基本就有电视,甚至还有大阳台。没有客厅的话,你的空间就只剩下卧室了。
3、窗户朝南,要无遮挡。
休息日你可以看到大把的阳光毫不吝惜地照进来。这一点对于好心情非常重要。如果你的窗子朝西或者朝北,或者有高楼遮住了你一半的视线,或者窗户太小,你就不会太开心。脑补一下吧:大冬天的周末,睡到十点,拉开窗帘,满室生春,泡一壶茶,站在窗前,远远近近的风景尽收眼底。你顿时爽了。
4、要大床,除非你受了八关斋戒。
广场舞大妈说她只让正经人住,你要不正经她还不租给你呢,然后一个劲儿地夸自己的房子有多么好。但你还是看出一些弊端,比如卧室没有床,只有一张小床垫。——大妈不会聪明到为了把房子租个好价钱而特地买个大床,她不知道,如果她买张大床,很多人愿意多出200块钱把这房子租下来,押一付三,增加的租金立刻抵消了大床的成本。可见,把数学应用在生活中有多么重要。
第六步:运筹帷幄。
当你现场看过的房子数据比较充裕时,就会追求卧室里是不是有书架、洗手间是不是通风良好这样的指标了。达到这个水平时,再看两三家就够了。
看到再好的房子,也别当场定下来。一时的感觉有可能是假相。尤其是在你看了超过十间房时,你已经分不清哪间是哪间了。你可能看一间觉得满意,看到下一间又觉得满意。这时,你需要问一问房东,能不能拍张照片。告诉她你要多比较两家,这样,她还会自动给你压低房租。不然,她会以为你不是一个人来住。当然,你也可以告诉她你是发给你妈看,但那样似乎有点丢人,毕竟你都三十岁了。
通情达理的房东一般都不会拒绝你。拒绝你的房东,你要考虑是不是要住在这里,因为和他们的相处恐怕容易起芥蒂。要求拍照片是检验房东性情的好办法。
拍了十多家房间的照片,就可以去吃饭了。因为你饿了。找一家麦当劳或者肯德基吧,可惜肉全没有了。你痛恨自己累了一下午还不能吃饱。但要记住,你此行的目的是找房子,不是吃。
要一杯饮料。把看过的房子一一列在纸上,打开照片,比较其优劣。你假如会用SWOT分析法更好,PEST就不用了,装逼也需要有限度。
然后,你就得到一张近似下图的列表。
先排除一半,再从未排除的选项里选优,就确定了一个候选房。
别着急,你还需检验一下它是否有效。不必做robust检验,只需在你未曾涉足的小区观察两套房有个比较就行了。一般不会优于之前的最优解。
然后,你打电话给最优解姐姐。交了定金,就可以愉快地打道回府了。
你共拨了40多通电话,逛了5个小区,看过16间房。加上吃饭,花了5个小时。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28