
大数据利器:浅谈数据可视化那些可用的工具和示例
什么是数据可视化?数据可视化主要旨在借助于图形化手段,清晰有效地传达与沟通信息。为了有效地传达思想概念,美学形式与功能需要齐头并进,通过直观地传达关键的方面与特征,从而实现对于相当稀疏而又复杂的数据集的深入洞察。
这意味面对一大堆杂乱的数据你无法嗅觉其中的关系,但通过可视化的数据呈现,你能很清晰的发觉其中价值。在经过一阶段的数据分析平台搭建工作后,结合比赛,我开始了对数据可视化的研究,结合几篇对可视化技术与工具的描述,以下整理出一些数据可视化的资料与知识,以供参考。
一、数据源类型
One-dimensional data / Points
Two-dimensional data / Tables
Multidimensional data / Relational Tables
Text and hypertext
Hierarchies and graphs / Telephone calls and Web documents
Algorithms and software
二、可视化手段
三、可视化工具汇总
3.1 简易图表
1.DataWrapper: 一个非常漂亮的在线服务,上传数据并快速生成图表后,就可以到处使用或将其嵌入在自己的站点中。这个服务最初定位于专栏记者,而实际上任何人都可以使用。 DataWrapper 在新版本浏览器中可以显示动态图表,而在旧版本浏览器中则显示静态图片。
2.Flot: 一个基于jQuery 的绘图库,使用HTML 的canvas 元素,也支持旧版本浏览器(甚至IE6)。它支持有限的视觉形式(折线、散点、条形、面积),但使用很简单。
3.Google Chart Tools
4.gRaphaël: 与Flot 相比,它更灵活,而且还要更漂亮一些。
5.Highcharts JS: JavaScript 图表库,包含一些预定义的主题和图表。它在最新浏览器中使用SVG, 而在旧版本IE(包括IE6 及更新版本)中使用后备的VML。
6.JavaScript InfoVis Toolkit: 简称JIT,它提供了一些预设的样式可用于展示不同的数据,包括很多例子,而文档的技术味道太浓。
7.jqPlot: jQuery 绘图插件,只支持一些简单的图表,适合不需要自定义样式的情况。
8.jQuery Sparklines: 可生成波形图的jQuery 插件,主要是那些可以嵌在字里行间的小条形图、折线图、面积图。支持大多数浏览器,包括IE6。
9.Peity: jQuery 插件,可生成非常小的条形图、折线图和饼图,只支持较新版本的浏览器。再强调一遍,它能生成非常小又非常精致的小型可视化图表。
10.Timeline.js: 专门用于生成交互式时间线的一个库。不用编写代码,只用其代码生成器即可;只支持IE8及以后的版本。
3.2 图谱可视(具有网络结构的数据)
1.Arbor.js: 基于jQuery 的图谱可视化库,连它的文档都是用这个工具生成的(可见它有多纯粹、多meta)。这个库使用了HTML 的canvas 元素,因此只支持IE9 和其他较新的浏览器,当然也有一些针对旧版浏览器的后备措施。
2.Sigma.js: 一个非常轻量级的图谱可视化库。无论如何,你得看看它的网站,在页面上方的大图上晃几下鼠标,然后再看看它的演示。Sigma.js 很漂亮,速度也快,同样使用canvas。
3.3 地图映射(包括地理位置数据或地理数据)
1.Kartograph: Gregor Aisch 开发的一个基于JavaScript 和Python 的非常炫的、完全使用矢量的库,它的演示是必看的。最好现在就去看一看。保证你从来没见过这么漂亮的在线地图。Kartograph 支持IE7 及更新版本。
2.Leaflet: 贴片地图的库,可以在桌面和移动设备上流畅地交互。它支持在地图贴片上显示一些SVG 数据层(参见Mike 的演示”Using D3 with Leaflet”: Leaflet 支持IE6(勉强)或IE7(好得多),当然还有其他更新版本的浏览器。
3.Modest Maps: 作为贴片地图库中的老爷爷,Modest Maps 已经被Polymaps 取代了,但很多人还是喜欢它,因为它体积小巧,又支持IE 和其他浏览器的老版本。Modest Maps 有很多版本, 包括ActionScript、Processing、Python、PHP、Cinder、openFrameworks…… 总之,它属于老当益壮那种。
4.Polymaps: 显示贴片地图的库,在贴片上可以叠加数据层。Polymaps 依赖于SVG,因此在较新的浏览器中表现很好。
3.4 原始绘图(高级定制)
1.D3.js
2.Processing.js
3.Paper.js: 在canavs 上渲染矢量图形的框架。同样,它的网站也堪称互联网上最漂亮的网站之一,它们的演示做得让人难以置信。
4.Raphaël: 一个绘制矢量图形的库。
3.5 三维图形
1.PhiloGL: 专注于3D 可视化的一个WebGL 框架。
2.Three.js: 能帮你生成任何3D 场景的一个库,谷歌Data Arts 团队出品。
数据可视化之路,路漫漫其修远兮啊。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10