京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据是善政之技_数据分析师官培训
大数据火遍朝野,虽有部分人士属于跟风尾随,但大数据本身表现出的巨大潜力,却切切实实影响着社会各领域的未来视角。
如果我们能够通过可穿戴设备随时收集自身的各类体征数据,那么我们自然可以预测出我们将要发生什么病症,这对于人的生活健康质量将有革命性意义。
如果我们还能够将这些数据发送至医院,则预防或者在病症早期及时介入治疗也不是一句空话。
如果我们还能够在保护隐私的前提下将这些数据向各行各业开放,那么医药行业的药品研制周期将大幅度缩短,食品行业的安全监测也将实时更新,甚至于天气、环境的状况监测也有了“人的反应”的一面。
想象一下未来的天气和社会环境播报,可能会告诉你,昨天天气突降5度,整个城市有2151个人感冒。到了情人节,甚至能够告诉你,昨天有1113个人出现了恋爱的生物指数变动。
大数据毫无疑问是一场整合工业、农业、社会的信息革命,是对PC和移动时代的微创新积累之后的颠覆性革命。
前景如此广阔,中国也在行动。
上海卫生信息化数据平台正在做的尝试是:打破医院信息藩篱,当患者看病时,任意一家公立医院都能立即给出患者的就医病史、检查化验报告、近期用药并智能提示患者特质及简单预测等等。
北京市卫计委通过与百度进行大数据合作,将在公共突发事件、流行病爆发、健康服务业发展、人口流动等领域提供分析和预警。
6月12日政协双周协商座谈会上,俞正声和各界委员们共商大数据前景,探讨了大数据技术对于提高政府科学决策、监管市场、公共服务、社会管理和生态文明的重要性。
大数据首先是大,其数据体量巨大,例如国内最大的数据存量,百度的数据体量达到EB级别,而人类目前存储数据总量约为数百EB。其次是杂,多态、多模、多领域、多结构化的数据到处都是,要利用好大数据,需要很强的数据整合和清洗能力,在这方面搜索引擎具有很好的前期技术积累。再次是准,大数据的分析过程是逐层抽象、降维、概括和解读的过程。需要有很好的人文背景及统计思维。最后大数据的处理分析还是很难的。需要从简单的相关性分析向不相关性分析转变,需要从直接统计迈向高度概括,需要从窄域分析迈向跨域整合。
从政府提升现代治理和服务能力的角度看,大数据平台能够广泛应用于公共服务、廉政监督、行政优化、政府决策和金融监管等各领域。
1、在金融行业监管和服务上,构建金融风险控制大数据分析体系,能够及时发现税务和金融领域的漏洞,提高行政效率。当数据整合到一定程度时,能够实时分析国内小微企业的生存状况,可以给精准经济调控提供有力数据支持。
2、在廉政监督方面,可以构建全国官员的网络形象分析平台,对于官员网络口碑和网络举报进行实时收集,从而形成廉政勤政的强大威慑力。
3、在公共突发事件中,构建全网舆情监测平台,有助于建立公共突发事件决策和预测模型,及时处置事件,提供舆论景气指数,从而能够更快对民众意见,民心回暖、公众态度做出判断,有利于调整行政节奏和弥补失误。对于政府决策和政策实施,可以考虑进行政策实施推演,进一步优化政策的合理性。
4、在公共服务上,通过数据共享,实现精准的电子政务公共服务体系,传统官网移动化,民生服务个性化。结合社交化和本地化趋势,能够实施“指尖上的公众服务”。
5、在城市和社区管理上,建设大数据城市网格化管理协调平台。能够对各社区进行广泛的差异化分析,提供社区文化、社区安全、社区环境质量、社区居民心态、社区网络消费、社区物流配送等诸多方面的精准服务。
6、在环境监测上,基于大数据分析判别城市受污染的程度和特质,特别是对于区域污染的全局判断,对于污染源的定点清除等等具有突破价值。
大数据通过:信源整合化、数据规范化、分析相关化、研判跨域化、发布共享化,使得政府能够把握现实和洞察未来,从而提升决策的科学、高效和智能,也是建设透明、责任、现代政府的迫切需要。
当前,需要推动国家大数据分析的建设,建立跨越各部门、各领域、各界别的数据联通与开放标准体系,应尽快推进大数据整体实施方案的完善,保护个人隐私。可以从舆情、医疗、金融、食品安全、环境、城管、教育等诸多领域突破,取得实效,扩大影响。
推进大数据建设,需要充分发挥国内互联网公司的技术优势和本地特色,以百度为代表的互联网公司在大数据时代大有可为,从国家安全和数据优势的角度打破传统的政府部门垄断部分行政数据格局,更多地整合民间和官方的各自优势,实现跨越式发展,在分析体系、数据清洗、挖掘方法方面有所突破。
百度是国内首家管理EB级数据的互联网公司,在文本处理、数据清洗、异构规范、语义理解和深度学习上具有很强的技术优势。百度已正式开放了大数据引擎,将与社会各界开展搜索指数、舆情监测、趋势预测合作。阿里拥有海量交易数据、跨界数据和信用数据。腾讯则保有大量的社交网络、电子商务和O2O数据。新浪是国内最大的微博社交媒体平台。整合好这些民间数据是大数据快速推进的关键。
大数据是提升国家治理和服务能力的基础技术,需要创造性的运用互联网思维,推动中小型大数据公司的国内上市,加快各部门的信息公开,加强民间和官方的技术合作和交流,加大网民在数据运用和分析中的参与力度,加速对大数据技术的国家支持,加固大数据的隐私保护和立法规范,大数据才能走得更远。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12