京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据和清洁能源其实都是城镇化_数据分析师
由国务院发展研究中心主办的“中国发展高层论坛2015”于3月21日-23日在北京举行。在会场上中国社会科学院世界经济与政治研究所国际金融研究中心副主任、研究员何帆表示,如果有一个经济学家可以影响股票,我肯定买保罗·罗默教授的股票,他不仅是蓝筹股,而且是潜力股。他刚刚给我们讲了很多故事,我们讲的创新创业的故事,我们讲的大数据的故事,我们讲的清洁能源的故事,其实都在一个舞台上,就是中国的城镇化。
以下为发言实录:
何帆:如果有一个经济学家可以影响股票,我肯定买保罗·罗默教授的股票,他不仅是蓝筹股,而且是潜力股。他刚刚给我们讲了很多故事,我们讲的创新创业的故事,我们讲的大数据的故事,我们讲的清洁能源的故事,其实都在一个舞台上,就是中国的城镇化。所以我收获很多。
保罗·罗默教授讲到人均收入和城市化之间有相当大的关系,但我不知道能不能确切发现一个因果的关系。而且在中国发生的城市化是不是一个故事。我个人感觉可能不止一个故事,发生在深圳的城市化很可能和发生在内蒙古以鬼城著称的鄂尔多斯的城市化是不一样的。鄂尔多斯的城市化是如果要把这个城市的城市化水平提高会更容易,但效果可能更差。发生在深圳的城市化需要的机缘巧合,要做的工作更多,但效果可能会更好。我们能不能把中国的城市化只看成一个故事?
保罗·罗默教授还讲到中国各个地方政府之间的竞争。这个很重要,因为中国这么大不可能通过一个政策解决一个问题。他有一点是讲到为什么中国的城市化做得更好。因为有一个地方的政府官员在当地有很强的权威,还有激励机制,可能能力很强。我一边看着介绍,我一边想,他说的是仇和。就在两会之后刚刚因为腐败的问题被抓起来的中国的云南省官员。我想我们一方面需要地方政府的竞争。另外一方面,我们的地方政府之间的竞争又出现这么多的问题。
我想问保罗·罗默教授一个问题,如果我是年轻的地方政府官员,我想做事情,我又不想重蹈仇和的覆辙。在中国的城市化过程中,我该做什么?怎么做?
主持人:非常好。刚刚两位都提出了问题,保罗·罗默教授也肯定有自己的想法。我也一并问他,我们现在讲城市化的时候,既可以理解成大城市的城市化,也可以理解成城镇化。我刚刚注意到稻葵很精确地用城镇化这个概念,就是township。我想请保罗·罗默教授把整个框架给我们讲一讲。
保罗·罗默:哈佛规划委员会的这个问题很好,要牢记。一般来讲,比如政府保护公共空间,同时,也不过多干预私有空间。他们的决定有时候可能会超越前者,有些政府的决定是超越了界限,更加负责。我们要通过各种机制防止独断,同时也可以通过法律,比如起诉,或者是允许诉讼。风险就是会降低决策的效率。在其它国家,反对腐败的重要做法就是带来了一个后果,使政府不敢做决定,害怕做决定,比如修路或者不修路。一方面我们要提高效率,一方面也不能允许腐败。在美国,效率非常低。如果哈佛规划委员会的效率太低了,是不是可以对他们进行测试,看政府做得是不是对。如果居民都离开了,就说明政府做得不对。这也可以作为惩罚领导的手段。人们都不住在哪儿了。各个城市的竞争是很有效的做法。
另外就是透明。如果中央政府、省政府鼓励竞争,他们可以提供信息,让居民了解一个城市发展的情况。让他们做出好的决定,好比大学,学生可以选择在哪个大学接受教育。哪个城市好,居民就可以选择居住在那里,给他们提供可靠的信息,好比保安市场。城市之间要开展竞争,就必须告诉居民准确的信息,这个城市的情况怎么样。各个城市的透明度可以使领导做出好的决定,不会滥用权力。
关于城市化的类型,中国有一点做得很好,就是提供廉租房、廉价房、经济适用房,让新移民居住。关于城镇化,经常会有这样的廉租房、廉价房。也许小城镇没有大城市漂亮,但它确实给人们提供了就业的场所。城市化在其它地方没有做好,有些国家发展了城市,但没有很好的规划,成为了贫民窟。小城镇也是很好的做法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13