
大数据和清洁能源其实都是城镇化_数据分析师
由国务院发展研究中心主办的“中国发展高层论坛2015”于3月21日-23日在北京举行。在会场上中国社会科学院世界经济与政治研究所国际金融研究中心副主任、研究员何帆表示,如果有一个经济学家可以影响股票,我肯定买保罗·罗默教授的股票,他不仅是蓝筹股,而且是潜力股。他刚刚给我们讲了很多故事,我们讲的创新创业的故事,我们讲的大数据的故事,我们讲的清洁能源的故事,其实都在一个舞台上,就是中国的城镇化。
以下为发言实录:
何帆:如果有一个经济学家可以影响股票,我肯定买保罗·罗默教授的股票,他不仅是蓝筹股,而且是潜力股。他刚刚给我们讲了很多故事,我们讲的创新创业的故事,我们讲的大数据的故事,我们讲的清洁能源的故事,其实都在一个舞台上,就是中国的城镇化。所以我收获很多。
保罗·罗默教授讲到人均收入和城市化之间有相当大的关系,但我不知道能不能确切发现一个因果的关系。而且在中国发生的城市化是不是一个故事。我个人感觉可能不止一个故事,发生在深圳的城市化很可能和发生在内蒙古以鬼城著称的鄂尔多斯的城市化是不一样的。鄂尔多斯的城市化是如果要把这个城市的城市化水平提高会更容易,但效果可能更差。发生在深圳的城市化需要的机缘巧合,要做的工作更多,但效果可能会更好。我们能不能把中国的城市化只看成一个故事?
保罗·罗默教授还讲到中国各个地方政府之间的竞争。这个很重要,因为中国这么大不可能通过一个政策解决一个问题。他有一点是讲到为什么中国的城市化做得更好。因为有一个地方的政府官员在当地有很强的权威,还有激励机制,可能能力很强。我一边看着介绍,我一边想,他说的是仇和。就在两会之后刚刚因为腐败的问题被抓起来的中国的云南省官员。我想我们一方面需要地方政府的竞争。另外一方面,我们的地方政府之间的竞争又出现这么多的问题。
我想问保罗·罗默教授一个问题,如果我是年轻的地方政府官员,我想做事情,我又不想重蹈仇和的覆辙。在中国的城市化过程中,我该做什么?怎么做?
主持人:非常好。刚刚两位都提出了问题,保罗·罗默教授也肯定有自己的想法。我也一并问他,我们现在讲城市化的时候,既可以理解成大城市的城市化,也可以理解成城镇化。我刚刚注意到稻葵很精确地用城镇化这个概念,就是township。我想请保罗·罗默教授把整个框架给我们讲一讲。
保罗·罗默:哈佛规划委员会的这个问题很好,要牢记。一般来讲,比如政府保护公共空间,同时,也不过多干预私有空间。他们的决定有时候可能会超越前者,有些政府的决定是超越了界限,更加负责。我们要通过各种机制防止独断,同时也可以通过法律,比如起诉,或者是允许诉讼。风险就是会降低决策的效率。在其它国家,反对腐败的重要做法就是带来了一个后果,使政府不敢做决定,害怕做决定,比如修路或者不修路。一方面我们要提高效率,一方面也不能允许腐败。在美国,效率非常低。如果哈佛规划委员会的效率太低了,是不是可以对他们进行测试,看政府做得是不是对。如果居民都离开了,就说明政府做得不对。这也可以作为惩罚领导的手段。人们都不住在哪儿了。各个城市的竞争是很有效的做法。
另外就是透明。如果中央政府、省政府鼓励竞争,他们可以提供信息,让居民了解一个城市发展的情况。让他们做出好的决定,好比大学,学生可以选择在哪个大学接受教育。哪个城市好,居民就可以选择居住在那里,给他们提供可靠的信息,好比保安市场。城市之间要开展竞争,就必须告诉居民准确的信息,这个城市的情况怎么样。各个城市的透明度可以使领导做出好的决定,不会滥用权力。
关于城市化的类型,中国有一点做得很好,就是提供廉租房、廉价房、经济适用房,让新移民居住。关于城镇化,经常会有这样的廉租房、廉价房。也许小城镇没有大城市漂亮,但它确实给人们提供了就业的场所。城市化在其它地方没有做好,有些国家发展了城市,但没有很好的规划,成为了贫民窟。小城镇也是很好的做法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14