
大数据会否使计划经济最终掌控世界
昨天可穿戴设备之父,大数据大师阿莱克斯·彭特兰来百家《BIG TALK》与中国科技界对话,在现场,我提向彭特兰提了一个已经思索许久的问题,请他回答。
问题大概是这样的:作为一种人类管理社会经济的一种实验,计划经济可说在之前是失败的,事实证明,国家通过计划指令的方式进行资源配置不如通过市场实现资源配置效率更高。但是,随着大数据技术的进步,国家对经济数据的掌控能力也随之增强,这会不会导致未来有一天,计划经济最终掌控世界?
可能因为翻译的问题,也可能是因为问题本身比较复杂,彭特兰并没有给出一个思路清晰的答案,我把这个同时转发到网上,也引发激烈争议,有的朋友强烈否定,有的朋友则有所反思。
如果排除意识形态方面的门户之见,我认为计划经济和市场经济各自优劣性以及在未来人类社会中各自所处的地位,市场是否永远是资源配置的最佳手段和主导性手段,这些问题,都是很值得讨论的。
人类自理性产生以来,对世界的掌控欲(政府世界)也随之而生,由此而言,掌控经济也是人类的天性所在,这也是乌托邦时期以及之后李斯特、马克思等经济学大师探索“计划经济”的由来。而后来在苏联和中国等社会主义国家的试验又证明,计划经济至少在目前是失败的。
计划经济试验在苏中的失败有各种原因,但归根结底还是因为它不如市场那样配置资源更有效率,无法精准的解决生产什么、怎样生产和为谁生产这三个主要问题。国家无法确切的知道消费者到底需要什么,自然在进行经济计划的时候会错漏百出。
但如果人类做计划的能力得到大幅度提高,会不会在某一天使计划的效率终于超过市场呢?在没有互联网之前,学界总认为在人类可预见的将来这是不可能的。但互联网和信息革命已经颠覆了太多东西,至少在收集信息数据、互联信息数据、储存信息数据、处理信息数据方面,其进步是所有人都不曾想到的,而这一不曾预想到的进步的结果之一,就是人类计划能力的提高,对世界的掌控力更强了。
市场是人类经济社会运行的原始动力,但计划因素的持续增强却也是事实,除了计划经济试验,企业的出现以及其规模的越来越大,也是计划因素增强的结果。因为在企业内部,本身就是“计划经济”的。
既然市场是在价格机制的支配下自发运行,既然无形的手无处不在,为什么还会有企业?上世纪30年代科斯就因为研究这一问题拿了诺贝尔经济学奖,他研究出的答案是,市场的运行时有成本的(交易成本),如果组织企业能够节约交易成本,企业的存在就有意义。
按这一逻辑,企业越大自然是节约的交易成本越高,但为什么在经济社会的早期,基本上没有什么大企业呢?因为技术达不到,企业的组织成本一旦高于交易成本,则企业存在无意义。随着技术的提高,企业的组织成本越来越低,企业的规模也越来越大,这就有了今天的跨国公司。企业规模的边界由技术决定,跨国公司的组成成本一旦高于交易成本,它就再也没法有效扩张了。
国家的道理也一样,黄仁宇当年研究明史,讲中华帝国为什么会一直运行低效,就是因为缺乏有效的“数目字管理”。所有帝国都一样,帝国的管理能力能够达到的极限,就是帝国崩溃前的边界。
但技术的进步,尤其是大数据的进步,却有可能把人类能够进行计划的边界大大扩张,扩张到足有一个国家那么大。而此处之大,并不只是指宏观上的规模大,也指在微观上的细致深入,尤其是后者,在之前,微观资源无法有效分配,是计划经济里最受批评的要点。因为国家所有资源都由政府决定,私人不掌握生产资料,于是乎国家可以罔顾私人的实际需要而进行经济计划。奥地利经济学派的路德维希·冯·米塞斯主张社会主义在经济上必然会失败,因为经济计算问题注定了政府永远无法正确的计算复杂万分的经济体系。只要缺乏了价格机制,社会主义政府根本无从得知市场需求的情报,而随之而来的必然是计划的失败和经济的彻底崩溃。
但现在,电脑、手机、可穿戴设备,再加上无线互联网,人类的需求从来没有如此容易地被汇集、处理,人类的数据处理能力从来没有的强大--未来会更强大,那么,未来政府是否会有可能更正确的“计算复杂万分的经济体系”呢?
计划经济管理的国家,说简单了,就是一个采取某种制度管理的超级公司,这个公司可能是集权的,也可能是民主的。完美的计划经济可确保所有资源都能持续运用,不会受到经济周期的波动所影响,如泡沫经济、停产以至失业问题都不会发生,而通货膨胀问题不会存在,而长期性的基建投资,更不会受市场因素而停止。正因为这些完美的预期,几百年间才会有无数人去憧憬试验计划经济。大数据技术的进步,会复活这些憧憬吗?
最后,本文无意进行意识形态方面的争论,只是从技术进步层面提出一些学术假设,而这些假设也不代表作者对计划经济或者市场经济的立场与看法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27