京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据需要大智慧,切忌空谈_数据分析师培训
大数据在国内已经形成应用热潮
最近两年,大数据概念在中国非常热,各方面的应用也已经开始推进,最为著名的便是刚刚结束的巴西世界杯比赛的赛事预测。在其他方面,上海等大城市利用大数据进行智慧交通管理,一些电商网站也利用大数据进行客户行为和购买预测,提升了精细化营销的水平。
国内最为重视大数据的公司,以BAT三家互联网巨头为最,腾讯有数亿社交用户的交流信息,阿里巴巴有亿万网购用户的交易行为数据,百度掌握了中国互联网用户最为集中的搜索行为和流量指向数据,所以,这些公司都拥有了很好的大数据应用的基础。
以百度为例,百度的世界杯大数据预测在巴西世界杯期间帮助很多人更好的观看比赛和预测赛果,而百度糯米的“专享座”服务更是创造了大数据趣味应用的经典之作。当然,央视与百度的合作在春节期间对春运客流的分析让很多人第一次感受到了大数据的威力,而与联合国启动战略合作共建大数据联合实验室更是开创了联合国开发计划署的先例。
什么是大数据?数据采集能力至关重要
按照百科的解释,大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法通过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。
即便如此,有关大数据,也仍然没有大家都能普遍接受的统一定义。可以说,数据量大并非大数据,再大量的数据如果不能被利用也不能被称为大数据,而单一领域的大量的数据的集合更不是真正意义上的大数据。根据一般的理解,大数据应该是围绕特定的主题而将看起来毫不相干的数据集成在一起构成统一视图,然后寻找到期间合理的关联因素,从而超越简单的统计分析而得出意想不到的结论。
阿莱克斯•彭特兰教授指出了大数据应用比较成功的几个领域,包括营销场景的预测、城市管理、疾病预测、金融预测等等,这些方面都要依靠海量的数据积累和不同的客户应用场景,互联网搜索引擎具有先天优势。
百度是世界人口最多国家的最大搜索引擎,最近也在积极加强国际布局,刚刚又高调进入葡语市场,十几年来积累了大量的数据资料,这是其他互联网公司无法比拟的优势。“大数据”之“大”,更多的意义在于:人类可以“分析和使用”的数据在大量增加,通过这些数据的交换、整合和分析,人类可以发现新的知识,创造新的价值,并让很多常态化的认知、判断、思维定势、产品形态、服务模式,形成全新的面貌和演进方向。
显然,百度面向的是全网用户的全方面使用,因此是在这些领域数据资料最全的公司,最有能力展开大数据领域的探索。通过大数据的分析,百度实现了从搜信息到搜产品的转变,也在数据利用方面不断创新。
大数据不仅仅要“大”,更需要先进的数据分析与应用能力
在国内,拥有海量数据的公司不少,比如银行、航空、通信运营商,但这些公司对数据的利用显然不够,限于体制与人员结构上的问题,至今在大数据方面才刚刚起步。
互联网在这方面已经捷足先登了,腾讯阿里都有自己的大数据应用开发团队,百度在2013年初就成立了百度研究院,其中第一个重点方向的就是深度学习,并为此而成立Institute Of Deep Learning(IDL),作为大数据领域的领先研究机构,为百度这两年在大数据领域的进展做好了技术与人才准备。本次世界杯预测模型也正是由百度深度学习研究院派遣资深数据科学家协助大数据部研发团队共同构建的,其小组赛阶段的预测成功率为58.33%,淘汰赛阶段全部预测准确。
媒体报道显示,在李彦宏亲自推动下,百度深度学习研究院吸引了一大批世界级科技精英的加盟,比如前Facebook资深科学家徐伟、美国新泽西州立大学统计系教授张潼等,同时还邀请到“谷歌大脑之父”吴恩达的加盟。
大数据的应用还需要载体,不能称为无本之木
横空出世的小米手机、特斯拉的电动车、乐视的超级电视、海尔的空气盒子、引发热潮的微软小冰、热播的《纸牌屋》之类的产品,它们和传统的创新型产品似乎并无很大差异,但背后其实都有大数据应用的影子。以大悦城为例,当消费者想去一个商家,百度会通过大数据存储和分析告诉他,这个商家在几层,里面有多少人;消费者想离店,百度地图将指引具体路线、怎么去停车场,更准确地找到自驾车辆。
大数据的价值要通过相应的产品体现出来,比如,智能可穿戴设备就离不开大数据的应用,否则将变成死气沉沉的玩具。在大数据的利用上,国内比较成熟的领域包括互联网金融方面的风险控制、网购领域的智能推荐以及物联网交通管理等,比较成功的产品有阿里巴巴的余额宝、咕咚智能手环、百度的百度指数等。
在大数据的应用上,百度可以说是不遗余力。实际上,百度也早已超越搜索,成为集合网页、贴吧、图片、知道、新闻等优势资源的跨屏整合营销平台,覆盖了网友所有的关键营销时刻百度通过“知心搜索+轻应用+语音搜索+LBS方圆定位技术”等技术,百度正努力实现“让搜索引擎像人脑一样智能”。数据显示,2013年百度净利润有三分之二支出具有“科技感”的移动项目上,智能手环、智能手表、电子秤等等都有涉及,还据说在研发无人驾驶自行车。
总体上说,大数据的发展需要扎扎实实的应用,不能总是玩概念,更需要多方面的积累资源提升技术水平,在数据存储、数据分析和应用场景上不断开拓创新,如此才能真正触摸到大数据的灵魂。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28