
CDA数据分析师等级认证证书
(Certified Data Analyst Certificate)
一、考试简介:
CDA(Certified Data Analyst),全称“注册数据分析师”,由“CDA注册数据分析师协会(Certified Data Analyst Institute)”在顺应大数据、云计算的潮流下发起成立的职业简称。旨在加强国内外乃至全球范围内正规化、科学化、专业化的数据分析人才队伍建设,进一步提升数据分析师的职业素养与能力水平,促进数据分析行业的高质量持续快速发展。由于世界范围内缺乏数据分析师考核认证标准,CDA协会以丰厚的积淀,整合资源,汇聚国内外学术界、实务界顶级数据分析师团队推出“CDA注册数据分析师认证考核”,为企业、政府等单位培养优秀的数据分析人才。
二、CDA等级认证考试(详情参考等级细分):
CDA Level Ⅰ
面向范围:人人皆需的职场数据思维与通用数据技能
1. 零基础就业转行者、应届毕业生
2. 产品、运营、营销等业务岗与研发、技术岗在职者
3. 企业创始人、经理人、管理咨询类岗位从业者
岗位去向:商业(业务)分析师、初级数据分析师、(数据)产品运营、(数字)市场营销、数据专员等
CDA Level II
面向范围:企业数字化发展中必备的数据分析流程与技能。
1. 产品、运营、营销等业务部门与研发、中台、技术类部门数据分析相关岗位在职者。
2. 数字化转型企业创始人与数字化流程中相关负责人。
岗位去向:数据分析师、(数据)产品运营经理、(数字)营销经理、风控建模分析师、量化策略分析师、数据治理(质量)等
CDA Level III
面向范围:企业数字化发展中必备的高级数据分析方法与技术。
1. 业务岗与技术岗从事数据分析、数据挖掘、机器学习等技术在职提升者。
2. 从事算法科学、深度学习等工作的科研人员、分析师与工程师等。
岗位去向:高级数据分析师、机器学习工程师、算法工程师、数据科学家、首席数据官等
三、招生对象及报考条件:
Level Ⅰ:随报随考,考生报名成功后,可在一年内自行选择时间,预约就近考试中心进行考试。》查看考场《
Level Ⅱ:随报随考,考生报名成功后,可在一年内自行选择时间,预约就近考试中心进行考试。》查看考场《
Level Ⅲ:一年四届(3、6、9、12月的最后一个周六),每届考前一个月截止该届报名。》查看考场《
四、报名流程
五、考试内容:
Level Ⅰ:客观题(单选+多选)
Level Ⅱ:客客观题(单选+多选)
Level Ⅲ:客观+案例分析
考试内容按照CDA等级标准大纲要求命题;考试最终成绩分为A,B,C,不及格四个层次,A,B,C三个层次皆为通过考试并获得认证证书。
六、考试费用:
Level Ⅰ:1200 RMB
Level Ⅱ:1700 RMB
Level Ⅲ:2000 RMB
(注:考试未通过者可进行补考,补考费用为六折优惠。)
报名地址:CDA考试中心
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08