
可穿戴设备掌声与吐槽齐飞 无大数据不智能_数据分析师培训
苹果公司近日正式发布Apple Watch智能手表。面对Apple Watch的到来,几乎所有的智能穿戴设备厂商都是怀着忐忑的心情,既希望Apple Watch能快些到来,又害怕Apple Watch带来的冲击。一如2010年的平板电脑市场,苹果iPad的问世触发了市场的兴奋点,同时也让诸多厂商无处安身。不同于5年前的平板电脑,今天的Apple Watch有望引爆的不仅仅是智能手表的行情,还将会开启整个智能穿戴设备的市场大门。不过,遗憾的是,从正式发布的Apple Watch来看,撬动市场并不那么容易,在苹果之前,已经有了很多“先烈”。
硬件超前软件缺席
智能穿戴设备发展至今,我们已经看到了Apple Watch手表、Google Glass眼镜、Jawbone手环、Galaxy Gear手表、Sensoria智能袜子、耐克智能鞋等。参与其中的厂商既有Google、盛大、小米这样的互联网企业,也有苹果、三星、华为这样的终端厂商,甚至还有Intel、高通等核心元器件商。可以说,在智能穿戴设备领域,只有我们想不到,没有厂商做不到。
“今年必将成为可穿戴智能设备年!”早在两年前,这样的论断就已甚嚣尘上,而今苹果公司发布Apple Watch令这句话显得更有力了。
说到智能穿戴设备,目前广为消费者所知的是智能手表、手环以及智能眼镜。除了这些,还有各种超前得让人脑洞大开的神器,比如,穿起来不会迷路的鞋子,可防止脚部受伤的智能袜子,提前十分钟通知你要排便的神器,检测你心脏的T恤,还有可以燃烧脂肪的马甲。不可否认,这些产品的设想都是极其美好的,然而应用短板却使这些产品在体验上总是棋差一招。
应该说,目前智能穿戴设备存在的尴尬在于硬件已经超前发展,但软件仍缺席。一句话:造型太超前,技术太落后。比如,穿起来不会迷路的智能鞋子,功能的实现需要通过触觉反馈和GPS 模块来为穿着者提供导航,其中创建数据的交互、用户数据的持续搜集和分析,这些都需要相关联的大数据,然而目前大数据应用的发展还远未达到这一程度。因为缺乏使用功能上的刚性需求,大多数智能穿戴设备无法长期俘获用户青睐。
创新不足加剧同质竞争
目前,业界基本认可智能穿戴设备还未成熟的观点,不可否认的是,智能穿戴设备正在改变着我们的生活。根据Enfodesk易观智库的分析,中国智能穿戴设备市场在2014年的规模为22亿元人民币。Apple Watch的正式上市会极大地刺激整个智能可穿戴设备市场规模的增加,预计市场规模将会达到135.6亿元人民币。
从智能手机市场的激烈竞争可以看出,在一定时间内,硬件产品的革新速度已经很快,以至各大厂商显得有些“江郎才尽”,市场同质化严重。同样的,在智能穿戴设备市场,基于目前的软件服务能力,智能穿戴设备产品的竞争也已经白热化。纵观市场,智能穿戴产品业态比较基础,没有带来革命性的冲击,定位尴尬,很多产品即无痛点又非刚需,难免沦为“鸡肋”。
归根结底,目前智能穿戴设备尚未真正成为消费者生活中的必需品,用户粘性仍然较差。就拿当下较为火热的智能手环来说,在市场需求不够旺盛的情况下,智能手环并不能为我们带来更多实质性的改变。这类产品在挑战用户的惰性,让消费者在做产品与生活习惯二选一的选择题。如果没有苹果产品那样的号召力,结局不言而喻。
市场爆发的触点在哪?
智能穿戴设备发展到现在,仅凭靠优秀的工业设计和包装就能开发出一款改变行业的硬件产品,这种情况已不复存在。因为,再好的硬件设备,缺乏软件支撑,只是一堆废铜烂铁。
纯粹的硬件制造依然处于产业链底端。当智能穿戴设备不是强加给人们某个熟悉的附属品,而是已经同人体的“器官”融合,给人强烈的需求的时候,才是智能穿戴设备市场爆发之时。这就意味着,在智能穿戴设备市场上,有制造基础不一定就可以做成智能硬件,这取决于有没有互联网化、有没有大数据、有没有云应用的整合。
从智能穿戴设备的应用上来说,更多的是基于后端云平台与大数据的交互。前端的可穿戴设备更多承担的是信息采集的功能,而不是信息处理的功能,这才是移动互联网大数据应用的思维。相关机构预测,在今年年底,移动连接的设备数量将超过世界人口。这种网络连接数量和类型的增长,不仅能够为用户提供更多的功能,同时也让智能穿戴设备更智能。
可以预见,智能穿戴设备将会层出不穷,并且不断更新。但是正如历史上路面交通工具历经多次变革,车轮形态不会发生太大的变化一样,对于智能穿戴设备来说,无论形态如何变化,最有意义的部分仍在于通过设备上的传感器所采集并保存于云端上的数据。因为有了大数据的支撑,硬件设备才具有智能的属性,而大数据则因为有了可穿戴设备的采集数据,才真正变得接地气。智能穿戴设备要真正成为人类、相关器械的延伸,帮助我们提升与生俱来的本能,对大数据的应用还有很长的路要走。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28